【題目】全民健身運(yùn)動(dòng)已成為一種時(shí)尚,為了了解我市居民健身運(yùn)動(dòng)的情況,某健身館的工作人員開(kāi)展了一項(xiàng)問(wèn)卷調(diào)查,問(wèn)卷包括五個(gè)項(xiàng)目:A:健身房運(yùn)動(dòng);B:跳廣場(chǎng)舞;C:參加暴走團(tuán);D:散布;E:不運(yùn)動(dòng).

以下是根據(jù)調(diào)查結(jié)果繪制的統(tǒng)計(jì)圖表的一部分.

運(yùn)動(dòng)形式

A

B

C

D

E

人數(shù)

12

30

m

54

9

請(qǐng)你根據(jù)以上信息,回答下列問(wèn)題:

1)接受問(wèn)卷調(diào)查的共有   人,圖表中的m=   ,n=   ;

2)統(tǒng)計(jì)圖中,A類所對(duì)應(yīng)的扇形圓心角的度數(shù)為   ;

3)根據(jù)調(diào)查結(jié)果,我市市民最喜愛(ài)的運(yùn)動(dòng)方式是   ,不運(yùn)動(dòng)的市民所占的百分比是   ;

4)鄭州市碧沙崗公園是附近市民喜愛(ài)的運(yùn)動(dòng)場(chǎng)所之一,每晚都有暴走團(tuán)活動(dòng),若最鄰近的某社區(qū)約有1500人,那么估計(jì)一下該社區(qū)參加碧沙崗暴走團(tuán)的大約有多少人?

【答案】1150,45,36;(228.8°;(3)散步,6%;(4450

【解析】

1)由項(xiàng)目的人數(shù)及其百分比求得總?cè)藬?shù),根據(jù)各項(xiàng)目人數(shù)之和等于總?cè)藬?shù)求得,再用項(xiàng)目人數(shù)除以總?cè)藬?shù)可得的值;

2乘以項(xiàng)目人數(shù)占總?cè)藬?shù)的比例可得;

3)由表可知樣本中散步人數(shù)最多,據(jù)此可得,再用項(xiàng)目人數(shù)除以總?cè)藬?shù)可得;

4)總?cè)藬?shù)乘以樣本中人數(shù)所占比例.

解:(1)接受問(wèn)卷調(diào)查的共有人,,

,

故答案為:15045、36;

2類所對(duì)應(yīng)的扇形圓心角的度數(shù)為,

故答案為:;

3)根據(jù)調(diào)查結(jié)果,我市市民最喜愛(ài)的運(yùn)動(dòng)方式是散步,不運(yùn)動(dòng)的市民所占的百分比是,

故答案為:散步、;

4(人,

答:估計(jì)該社區(qū)參加碧沙崗暴走團(tuán)的大約有450人.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線yax2+bxa≠0)與x軸交于原點(diǎn)及點(diǎn)A,且經(jīng)過(guò)點(diǎn)B4,8),對(duì)稱軸為直線x=﹣2,頂點(diǎn)為D

1)填空:拋物線的解析式為   ,頂點(diǎn)D的坐標(biāo)為   ,直線AB的解析式為   

2)在直線AB左側(cè)拋物線上存在點(diǎn)E,使得∠EBA=∠ABD,求E的坐標(biāo);

3)連接OB,點(diǎn)Px軸下方拋物線上一動(dòng)點(diǎn),過(guò)點(diǎn)POB的平行線交直線AB于點(diǎn)Q,當(dāng)SPOQSBOQ12時(shí),求出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某數(shù)學(xué)興趣小組在探究函數(shù)y=|x2-4x+3|的圖象和性質(zhì)時(shí),經(jīng)歷以下幾個(gè)學(xué)習(xí)過(guò)程:

(1)列表(完成以下表格)

x

-2

-1

0

1

2

3

4

5

6

y1=x2-4x+3

15

8

0

0

3

15

y=|x2-4x+3|

15

8

0

0

3

15

(2)描點(diǎn)并畫出函數(shù)圖象草圖(在備用圖1中描點(diǎn)并畫圖)

(3)根據(jù)圖象完成以下問(wèn)題

()觀察圖象

函數(shù)y=|x2-4x+3|的圖象可由函數(shù)y1=x2-4x+3的圖象如何變化得到?

答:______

()數(shù)學(xué)小組探究發(fā)現(xiàn)直線y=8與函數(shù)y=|x2-4x+3|的圖象交于點(diǎn)E、F,E(-18),F(5,8),則不等式|x2-4x+3|8的解集是______

()設(shè)函數(shù)y=|x2-4x+3|的圖象與x軸交于A、B兩點(diǎn)(B位于A的右側(cè)),與y軸交于點(diǎn)C

①求直線BC的解析式;

②探究應(yīng)用:將直線BC沿y軸平移m個(gè)單位后與函數(shù)y=|x2-4x+3|的圖象恰好有3個(gè)交點(diǎn),求此時(shí)m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=(k是常數(shù)).

(1)若該函數(shù)的圖象與x軸有兩個(gè)不同的交點(diǎn),試求k的取值范圍;

(2)若點(diǎn)(1,k)在某反比例函數(shù)圖象上,要使該反比例函數(shù)和二次函數(shù)y=都是y隨x的增大而增大,求k應(yīng)滿足的條件及x的取值范圍;

(3)若拋物線y=與x軸交于A(,0)、B(,0)兩點(diǎn),且,=34,若與y軸不平行的直線y=ax+b經(jīng)過(guò)點(diǎn)P(1,3),且與拋物線交于,)、,)兩點(diǎn),試探究是否為定值,并寫出探究過(guò)程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】國(guó)家創(chuàng)新指數(shù)是反映一個(gè)國(guó)家科學(xué)技術(shù)和創(chuàng)新競(jìng)爭(zhēng)力的綜合指數(shù).對(duì)國(guó)家創(chuàng)新指數(shù)得分排名前40的國(guó)家的有關(guān)數(shù)據(jù)進(jìn)行收集、整理、描述和分析.下面給出了部分信息:

a.國(guó)家創(chuàng)新指數(shù)得分的頻數(shù)分布直方圖(數(shù)據(jù)分成7組:

30≤x40,40≤x5050≤x6060≤x70,70≤x80,80≤x90,90≤x≤100);

b.國(guó)家創(chuàng)新指數(shù)得分在60≤x70這一組的是:61.7 62.4 63.6 65.9 66.4 68.5 69.1 69.3 69.5

c40個(gè)國(guó)家的人均國(guó)內(nèi)生產(chǎn)總值和國(guó)家創(chuàng)新指數(shù)得分情況統(tǒng)計(jì)圖:

d.中國(guó)的國(guó)家創(chuàng)新指數(shù)得分為69.5.

(以上數(shù)據(jù)來(lái)源于《國(guó)家創(chuàng)新指數(shù)報(bào)告(2018)》)

根據(jù)以上信息,回答下列問(wèn)題:

1)中國(guó)的國(guó)家創(chuàng)新指數(shù)得分排名世界第______

2)在40個(gè)國(guó)家的人均國(guó)內(nèi)生產(chǎn)總值和國(guó)家創(chuàng)新指數(shù)得分情況統(tǒng)計(jì)圖中,包括中國(guó)在內(nèi)的少數(shù)幾個(gè)國(guó)家所對(duì)應(yīng)的點(diǎn)位于虛線的上方.請(qǐng)?jiān)趫D中用圈出代表中國(guó)的點(diǎn);

3)在國(guó)家創(chuàng)新指數(shù)得分比中國(guó)高的國(guó)家中,人均國(guó)內(nèi)生產(chǎn)總值的最小值約為______萬(wàn)美元;(結(jié)果保留一位小數(shù))

4)下列推斷合理的是______

相比于點(diǎn)A,B所代表的國(guó)家,中國(guó)的國(guó)家創(chuàng)新指數(shù)得分還有一定差距,中國(guó)提出加快建設(shè)創(chuàng)新型國(guó)家的戰(zhàn)略任務(wù),進(jìn)一步提高國(guó)家綜合創(chuàng)新能力;

相比于點(diǎn)B,C所代表的國(guó)家,中國(guó)的人均國(guó)內(nèi)生產(chǎn)總值還有一定差距,中國(guó)提出決勝全面建成小康社會(huì)的奮斗目標(biāo),進(jìn)一步提高人均國(guó)內(nèi)生產(chǎn)總值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=ax2+3x+c經(jīng)過(guò)A(﹣1,0),B40)兩點(diǎn),與y軸交于點(diǎn)C

1)求拋物線的解析式;

2)若點(diǎn)P在第一象限的拋物線上,且點(diǎn)P的橫坐標(biāo)為t,過(guò)點(diǎn)Px軸作垂線交直線BC于點(diǎn)Q,設(shè)線段PQ的長(zhǎng)為m,求mt之間的函數(shù)關(guān)系式,并求出m的最大值;

3)在(2)的條件下,拋物線上點(diǎn)D(不與C重合)的縱坐標(biāo)為m的最大值,在x軸上找一點(diǎn)E,使點(diǎn)BC、D、E為頂點(diǎn)的四邊形是平行四邊形,請(qǐng)直接寫出E點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知矩形,,,為邊上任意一點(diǎn),連結(jié),,以為直徑作分別交,于點(diǎn),連結(jié)

1)若點(diǎn)的中點(diǎn),證明:

2)若為等腰三角形時(shí),求的長(zhǎng).

3)作點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)

①當(dāng)點(diǎn)落在線段上時(shí),設(shè)線段交于點(diǎn),求的面積之比.

②在點(diǎn)的運(yùn)動(dòng)過(guò)程中,當(dāng)點(diǎn)落在四邊形內(nèi)時(shí)(不包括邊界),則的范圍是________(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖1,拋物線軸交于點(diǎn)、,與軸交于點(diǎn),且

1)求拋物線解析式;

2)如圖2,點(diǎn)是拋物線第一象限上一點(diǎn),連接軸于點(diǎn),設(shè)點(diǎn)的橫坐標(biāo)為,線段長(zhǎng)為,求之間的函數(shù)關(guān)系式;

3)在(2)的條件下,過(guò)點(diǎn)作直線軸,在上取一點(diǎn)(點(diǎn)在第二象限),連接,使,連接并延長(zhǎng)軸于點(diǎn),過(guò)點(diǎn)于點(diǎn),連接、、.若時(shí),求值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC中,ABAC10,tanA2,BEAC于點(diǎn)E,D是線段BE上的一個(gè)動(dòng)點(diǎn),則的最小值是( )

A. B. C. D. 10

查看答案和解析>>

同步練習(xí)冊(cè)答案