【題目】已知關(guān)于x的分式方程
(1)若方程的增根為x=1,求m的值
(2)若方程有增根,求m的值
(3)若方程無(wú)解,求m的值.
【答案】(1)m=-6;(2) 當(dāng)x=﹣2時(shí),m=1.5;當(dāng)x=1時(shí),m=﹣6;(3)m的值為﹣1或﹣6或1.5
【解析】試題分析:方程兩邊同時(shí)乘以最簡(jiǎn)公分母(x-1)(x+2),化為整式方程;
(1)把方程的增根x=1代入整式方程,解方程即可得;
(2)若方程有增根,則最簡(jiǎn)公分母為0,從而求得x的值,然后代入整式方程即可得;
(3)方程無(wú)解,有兩種情況,一種是原方程有增根,一種是所得整式方程無(wú)解,分別求解即可得.
試題解析:方程兩邊同時(shí)乘以(x+2)(x﹣1),得
2(x+2)+mx=x-1,
整理得(m+1)x=﹣5,
(1)∵x=1是分式方程的增根,
∴1+m=﹣5,
解得:m=﹣6;
(2)∵原分式方程有增根,
∴(x+2)(x﹣1)=0,
解得:x=﹣2或x=1,
當(dāng)x=﹣2時(shí),m=1.5;當(dāng)x=1時(shí),m=﹣6;
(3)當(dāng)m+1=0時(shí),該方程無(wú)解,此時(shí)m=﹣1;
當(dāng)m+1≠0時(shí),要使原方程無(wú)解,由(2)得:m=﹣6或m=1.5,
綜上,m的值為﹣1或﹣6或1.5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一元二次方程ax2+x﹣2=0有兩個(gè)不相等實(shí)數(shù)根,則a的取值范圍是( )
A.a
B.a=
C.a 且a≠0
D.a 且a≠0
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在△ABC中,∠BAC=90°,AB=AC,直線MN過(guò)點(diǎn)A且MN∥BC,點(diǎn)D是直線MN上一點(diǎn),不與點(diǎn)A重合.
(1)若點(diǎn)E是圖1中線段AB上一點(diǎn),且DE=DA,請(qǐng)判斷線段DE與DA的位置關(guān)系,并說(shuō)明理由;
(2)請(qǐng)?jiān)谙旅娴?/span>A,B兩題中任選一題解答.
A:如圖2,在(1)的條件下,連接BD,過(guò)點(diǎn)D作DP⊥DB交線段AC于點(diǎn)P,請(qǐng)判斷線段DB與DP的數(shù)量關(guān)系,并說(shuō)明理由;
B:如圖3,在圖1的基礎(chǔ)上,改變點(diǎn)D的位置后,連接BD,過(guò)點(diǎn)D作DP⊥DB交線段CA的延長(zhǎng)線于點(diǎn)P,請(qǐng)判斷線段DB與DP的數(shù)量關(guān)系,并說(shuō)明理由.
我選擇: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平行四邊形ABCD中,點(diǎn)E在AD邊上,連接BE、CE,EB平分∠AEC .
(1)如圖1,判斷△BCE的形狀,并說(shuō)明理由;
(2)如圖2,若∠A=90°,BC=5,AE=1,求線段BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC與△DEC均為等腰直角三角形,∠ACB=∠DCE=90°,連接BE,將BE繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°,得BF,連接AD,BD,AF
(1)如圖①,D、E分別在AC,BC邊上,求證:四邊形ADBF為平行四邊形;
(2)△DEC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn),其它條件不變,如圖②,(1)的結(jié)論是否成立?說(shuō)明理由.
(3)在圖①中,將△DEC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)一周,其它條件不變,問(wèn):旋轉(zhuǎn)角為多少度時(shí).四邊形ADBF為菱形?直接寫出旋轉(zhuǎn)角的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某同學(xué)報(bào)名參加學(xué)校秋季運(yùn)動(dòng)會(huì),有以下5個(gè)項(xiàng)目可供選擇:徑賽項(xiàng)目:100m、200m、1000m(分別用A1、A2、A3表示);田賽項(xiàng)目:跳遠(yuǎn),跳高(分別用T1、T2表示).
(1)該同學(xué)從5個(gè)項(xiàng)目中任選一個(gè),恰好是田賽項(xiàng)目的概率P為;
(2)該同學(xué)從5個(gè)項(xiàng)目中任選兩個(gè),求恰好是一個(gè)徑賽項(xiàng)目和一個(gè)田賽項(xiàng)目的概率P1 , 利用列表法或樹狀圖加以說(shuō)明;
(3)該同學(xué)從5個(gè)項(xiàng)目中任選兩個(gè),則兩個(gè)項(xiàng)目都是徑賽項(xiàng)目的概率P2為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,直線y=2x﹣2與曲線y= (x>0)相交于點(diǎn)A(2,n),與x軸、y軸分別交于點(diǎn)B,C.
(1)求曲線的解析式;
(2)試求ABAC的值?
(3)如圖2,點(diǎn)E是y軸正半軸上一動(dòng)點(diǎn),過(guò)點(diǎn)E作直線AC的平行線,分別交x軸于點(diǎn)F,交曲線于點(diǎn)D.是否存在一個(gè)常數(shù)k,始終滿足:DEDF=k?如果存在,請(qǐng)求出這個(gè)常數(shù)k;如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,E,F(xiàn)分別是邊AB,CD上的點(diǎn),AE=CF,連接EF,BF;EF與對(duì)角線AC交于點(diǎn)O,且BE=BF,∠BEF=2∠BAC,F(xiàn)C=2,則AB的長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是正方形,E是CD上的一點(diǎn),△ABF是△ADE的旋轉(zhuǎn)圖形.
(1)寫成由△ADE順時(shí)針旋轉(zhuǎn)到△ABF的旋轉(zhuǎn)中心、旋轉(zhuǎn)角的度數(shù).
(2)連接EF,判斷并說(shuō)明△AEF的形狀.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com