【題目】A、B兩地相距60km,甲、乙兩人從兩地出發(fā)相向而行,甲先出發(fā).圖中表示兩人離A地的距離S(km)與時間t(h)的關系,結合圖像回答下列問題:
(1)表示乙離開A地的距離與時間關系的圖像是________(填);
甲的速度是__________km/h;乙的速度是________km/h。
(2)甲出發(fā)后多少時間兩人恰好相距5km?
科目:初中數學 來源: 題型:
【題目】某水渠的橫截面呈拋物線,水面的寬度為AB(單位:米),現以AB所在直線為x軸,以拋物線的對稱軸為y軸建立如圖所示的平面直角坐標系,設坐標原點為O.已知AB=8米,設拋物線解析式為y=ax2﹣4.
(1)求a的值;
(2)點C(﹣1,m)是拋物線上一點,點C關于原點O的對稱點為點D,連接CD,BC,BD,求△BCD的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某天早晨,小王從家出發(fā)步行前往學校,途中在路邊一飯店吃早餐,如圖所示是小王從家到學校這一過程中所走的路程 s(米)與時間 t(分)之間的關系.
(1)小王從家到學校的路程共_________米,從家出發(fā)到學校,小王共用了________分鐘;
(2)小王吃早餐用了____________分鐘;
(3)小王吃早餐以前和吃完早餐后的平均速度分別是多少米/分鐘?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在數學興趣小組活動中,小明進行數學探究活動.將邊長為2的正方形ABCD與邊長為3的正方形AEFG按圖1位置放置,AD與AE在同一條直線上,AB與AG在同一條直線上.
(1)小明發(fā)現DG=BE且DG⊥BE,請你給出證明.
(2)如圖2,小明將正方形ABCD繞點A逆時針旋轉,當點B恰好落在線段DG上時,請你幫他求出此時△ADG的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】建設環(huán)境優(yōu)美、文明和諧的新農村,某村村委會決定在村道兩旁種植A,B兩種樹木,需要購買這兩種樹苗1000棵.A,B兩種樹苗的相關信息如下表:
設購買A種樹苗x棵,綠化村道的總費用為y元.解答下列問題:
(1)寫出y(元)與x(棵)之間的函數關系式;
(2)若這批樹苗種植后成活了925棵,則綠化村道的總費用需要多少元?
(3)若綠化村道的總費用不超過31000元,則最多可購買B種樹苗多少棵?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,將矩形ABCD沿GH對折,點C落在Q處,點D落在AB邊上E處,EQ與BC相交于F,若AD=8 cm,AB=6 cm,AE=4cm,則△EBF的周長是______________ cm.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖:在數軸上A點表示數a,B點示數b,C點表示數c,b是最小的正整數,且a,b滿足 +(c-7)2=0.
(1) a= ,b= ,c= .
(2) 若將數軸折疊,使得A點與C點重合,則點B與數 表示的點重合.
(3) 點A,B,C開始在數軸上運動,若點A以每秒1個單位長度的速度向左運動,同時,點B和點C分別以每秒2個單位長度和4個單位長度的速度向右運動,假設t秒鐘過后,若點A與點B之間的距離表示為AB,點A與點C之間的距離表示為AC,點B與點C之間的距離表示為BC.則AB= ,AC= ,BC= .(用含t的代數式表示)
(4) 請問:3BC-2AB的值是否隨著時間t的變化而改變? 若變化,請說明理由;若不變,請求其值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商場銷售、兩種品牌的洗衣機,進價及售價如下表:
品牌 | ||
進價(元/臺) | 1500 | 1800 |
售價(元/臺) | 1800 | 2200 |
(1)該商場9月份用45000元購進、兩種品牌的洗衣機,全部售完后獲利9600元,求商場9月份購進、兩種洗衣機的數量;
(2)該商場10月份又購進、兩種品牌的洗衣機共用去36000元
①問該商場共有幾種進貨方案?請你把所有方案列出來;
②通過計算說明洗衣機全部銷售完后哪種進貨方案所獲得的利潤最大
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】對于二次函數y=x2+mx+1,當0<x≤2時的函數值總是非負數,則實數m的取值范圍為( )
A. m≥﹣2 B. ﹣4≤m≤﹣2 C. m≥﹣4 D. m≤﹣4或m≥﹣2
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com