【題目】某廠家生產(chǎn)并銷售某種產(chǎn)品,假設銷售量與產(chǎn)量相等,如圖中的折線ABD,線段CD分別表示該產(chǎn)品每千克生產(chǎn)成本y1(單位:元),銷售價y2(單位:元)與產(chǎn)量x(單位:kg)之間的函數(shù)關系.

1)請解釋圖中點D的實際意義.

2)求線段CD所表示的y2x之間的函數(shù)表達式.

3)當該產(chǎn)品產(chǎn)量為多少時,獲得的利潤最大?最大利潤是多少?

【答案】(1)點D的實際意義:當產(chǎn)量為140kg時,該產(chǎn)品每千克生產(chǎn)成本與銷售價相等,都為40元;(2y2=x+1240≤x≤140); 3)當該產(chǎn)品的質量為80kg時,獲得的利潤最大,最大利潤為2560元.

【解析】

(1)點D的橫坐標、縱坐標的實際意義:當產(chǎn)量為140kg時,該產(chǎn)品每千克生產(chǎn)成本與銷售價相等,都為40.

(2)根據(jù)線段AB經(jīng)過的兩點的坐標利用待定系數(shù)法確定一次函數(shù)的表達式即可.

(3)先求出銷售價與產(chǎn)量x之間的函數(shù)關系,利用:總利潤=每千克利潤×產(chǎn)量列出有關x的一次函數(shù),求得最值即可.

解:(1)點D的實際意義:當產(chǎn)量為140kg時,該產(chǎn)品每千克生產(chǎn)成本與銷售價相等,都為40元.

2)設線段CD所表示的y2x之間的函數(shù)表達式為y2=k1x+b1,

點(0,124),(140,40)在函數(shù)y2=k1x+b1的圖象上,

∴y2x之間的函數(shù)表達式為y2=x+1240≤x≤140);

3)設線段AB所表示的y1x之間的函數(shù)表達式為y1=k2x+b2,

點(0,60),(100,40)在函數(shù)y1=k2x+b2的圖象上,

∴y1x之間的函數(shù)表達式為y1=x+600≤x≤100

設產(chǎn)量為x千克時,獲得的利潤為W.

0≤x≤100時,W=[(﹣x+124)﹣(﹣x+60]x=x802+2560,

x=80時,W的值最大,最大值為2560元.

100≤x≤140時,W=[(﹣x+124)﹣40]x=x702+2940, 由﹣0知,

x≥70時,Wx的增大而減小,

x=100時,W的值最大,最大值為2400元.

∵25602400,

當該產(chǎn)品的質量為80kg時,獲得的利潤最大,最大利潤為2560元.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】

(已有經(jīng)驗)

我們已經(jīng)研究過作一個圓經(jīng)過兩個已知點,也研究過作一個圓與已知角的兩條邊都相切,尺規(guī)作圖如圖所示:

(遷移經(jīng)驗)

1)如圖①,已知點M和直線l,用兩種不同的方法完成尺規(guī)作圖:求作⊙O,使⊙OM點,且與直線l相切.(每種方法作出一個圓即可,保留作圖痕跡,不寫作法)

(問題解決)

如圖②,在RtABC中,∠C90°,AC8,BC6

2)已知⊙O經(jīng)過點C,且與直線AB相切.若圓心OABC的內部,則⊙O半徑r的取值范圍為

3)點D是邊AB上一點,BDm,請直接寫出邊AC上使得∠BED為直角時點E的個數(shù)及相應的m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,AB是⊙O的直徑,弦CDABE,ACD=30°,AE=2cm.求DB長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖ABC,B90°,AB4,BC2,AC為邊作△ACEACE90°,AC=CE延長BC至點D,使CD5,連接DE.求證ABC∽△CED

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知拋物線

(1)求拋物線的對稱軸;

(2)時,設拋物線與軸交于兩點(在點左側),頂點為,若為等邊三角形,求的值;

(3)(其中)且垂直軸的直線與拋物線交于兩點.若對于滿足條件的任意值,線段的長都不小于1,結合函數(shù)圖象,直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)的圖象如圖所示,有下列4個結論:

;;

其中正確的結論有(

A.2B.3C.4D.0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線x軸相交于點A-2,0)、B4,0),與y軸相交于點C,連接BC,以線段BC為直徑作⊙M,過點C作直線CE∥AB,與拋物線和⊙M分別交于點DE.

1)求該拋物線所對應的函數(shù)關系式;

2)求線段DE的長;

3)在BC下方的拋物線上有一點PP點的橫坐標是m,△PBC的面積為S,求出Sm之間的函數(shù)關系式,并求出當m為何值時,S有最大值,最大值為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,轉盤中各個扇形的面積相等,分別標有數(shù)字1,23,4,小蘭轉動轉盤,記下指針所在扇形內的數(shù)字為,再由小田轉動轉盤,記下指針所在扇形內的數(shù)字為,將分別作為點的橫坐標和縱坐標,得到點

(1) 用列表法或畫樹狀圖法表示出的所有等可能出現(xiàn)的結果;

(2) 求點落在一次函數(shù)的圖象上的概率;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】暑假到了,即將迎來手機市場的銷售旺季.某商場銷售甲、乙兩種品牌的智能手機,這兩種手機的進價和售價如下表所示:

進價(元/部)

4000

2500

售價(元/部)

4300

3000

該商場計劃投入15.5萬元資金,全部用于購進兩種手機若干部,期望全部銷售后可獲毛利潤不低于2萬元.(毛利潤=(售價﹣進價)×銷售量)

1)若商場要想盡可能多的購進甲種手機,應該安排怎樣的進貨方案購進甲乙兩種手機?

2)通過市場調研,該商場決定在甲種手機購進最多的方案上,減少甲種手機的購進數(shù)量,增加乙種手機的購進數(shù)量.已知乙種手機增加的數(shù)量是甲種手機減少的數(shù)量的2倍,而且用于購進這兩種手機的總資金不超過16萬元,該商場怎樣進貨,使全部銷售后獲得的毛利潤最大?并求出最大毛利潤.

查看答案和解析>>

同步練習冊答案