【題目】如圖,∠MON=60°,作邊長為1的正六邊形A1B1C1D1E1F1 , 邊A1B1、F1E1分別在射線OM、ON上,邊C1D1所在的直線分別交OM、ON于點A2、F2 , 以A2F2為邊作正六邊形A2B2C2D2E2F2 , 邊C2D2所在的直線分別交OM、ON于點A3、F3 , 再以A3F3為邊作正六邊形A3B3C3D3E3F3 , …,依此規(guī)律,經(jīng)第n次作圖后,點Bn到ON的距離是 .
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一副三角板按如圖放置,則下列結(jié)論:
①如果∠2=30°,則有AC∥DE;
②∠BAE+∠CAD =180°;
③如果BC∥AD,則有∠2=45°;
④如果∠CAD=150°,必有∠4=∠C;
正確的有( )
A. ①②③ B. ①②④ C. ①③④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a>0)的頂點為P,其圖像與x軸有兩個交點A(﹣m,0),B(1,0),交y軸于點C(0,﹣3am+6a),以下說法:
①m=3;
②當(dāng)∠APB=120°時,a= ;
③當(dāng)∠APB=120°時,拋物線上存在點M(M與P不重合),使得△ABM是頂角為120°的等腰三角形;
④拋物線上存在點N,當(dāng)△ABN為直角三角形時,有a≥
正確的是( )
A.①②
B.③④
C.①②③
D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC在直角坐標(biāo)系中,
(1)△ABC中任意一點M(a,b)經(jīng)過平移后的對應(yīng)點為M′(a+2,b+1),將△ABC作同樣的平移,得到△A′B′C′,寫出A′、B′、C′的坐標(biāo),并在圖中畫出平移后圖形.
(2)求出三角形ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列調(diào)查中,適合用全面調(diào)查方式的是( )
A.調(diào)查“神舟十一號”飛船重要零部件的產(chǎn)品質(zhì)量B.調(diào)查某電視劇的收視率
C.調(diào)查一批炮彈的殺傷力D.調(diào)查一片森林的樹木有多少棵
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,以任意兩點P(x1,y1)、Q(x2,y2)為端點的線段的中點坐標(biāo)為.
(1)如圖(1),C為線段AB中點,A點坐標(biāo)為(0,4),B點坐標(biāo)為(5,4),則點C的坐標(biāo)為
(2)如圖(2),F(xiàn)為線段DE中點,D點坐標(biāo)為(﹣4,﹣3),E點坐標(biāo)為(1,﹣3).則點F的坐標(biāo)為________
應(yīng)用:
(1)如圖(3),長方形ONDF的對角線相交于點M,ON,OF分別在x軸和y軸上,O為坐標(biāo)原點,點D的坐標(biāo)為(4,3),則點M的坐標(biāo)為 ;
(2)在直角坐標(biāo)系中,有A(﹣1,2),B(3,1),C(1,4)三點,另有一點D與A,B,C構(gòu)成平行四邊形的頂點,直接寫出D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究規(guī)律:我們有可以直接應(yīng)用的結(jié)論:若兩條直線平行,那么在一條直線上任取一點,無論這點在直線的什么位置,這點到另一條直線的距離均相等.例如:如圖1,兩直線∥,兩點,在上,⊥于,⊥于,則.
如圖2,已知直線∥,,為直線上的兩點,.為直線上的兩點.
(1)請寫出圖中面積相等的各對三角形: .
(2)如果,,為三個定點,點在上移動,那么無論點移動到任何位置,總有: 與的面積相等;理由是: .
解決問題:
如圖3,五邊形是張大爺十年前承包的一塊土地的示意圖,經(jīng)過多年開墾荒地,現(xiàn)已變成如圖4所示的形狀,但承包土地與開墾荒地的分界小路(圖4中折線)還保留著,張大爺想過點修一條直路,直路修好后,要保持直路左邊的土地面積與承包時的一樣多.請你用以上的幾何知識,按張大爺?shù)囊笤O(shè)計出修路方案.(不計分界小路與直路的占地面積)
(1)寫出設(shè)計方案,并在圖4中畫出相應(yīng)的圖形;
(2)說明方案設(shè)計理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知A(﹣2,1)、B(﹣4,﹣2)、C(﹣1,﹣3),把△ABC平移之后得到△A′B′C′,并且C的對應(yīng)點C′的坐標(biāo)為(4,1).
(1)分別寫出A′、B′兩點的坐標(biāo);
(2)作出△ABC平移之后的圖形△A′B′C′;
(3)求△A′B′C′的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com