【題目】已知函數(shù)y=x2﹣2mx+2016(m為常教)的圖象上有三點(diǎn):A(x1,y1)、B(x2,y2)、C(x3,y3),其中x1=+m,x2=+m,x3=m﹣1,則y1、y2、y3的大小關(guān)系是( 。

A. y2<y3<y1 B. y3<y1<y2 C. y1<y2<y3 D. y1<y3<y2

【答案】A

【解析】

先求出二次函數(shù)y=x2-2mx+2016的對(duì)稱(chēng)軸為x=m,進(jìn)而得到函數(shù)圖象上的點(diǎn)到對(duì)稱(chēng)軸的距離越遠(yuǎn),函數(shù)值就越大;接下來(lái),通過(guò)比較Ax1,y1),Bx2,y2),Cx3,y3)到對(duì)稱(chēng)軸x=m的距離的大小關(guān)系,就能確定y1、y2、y3的大小關(guān)系.

在二次函數(shù)y=x2-2mx+2016中,對(duì)稱(chēng)軸x=m

Ax1,y1),Bx2,y2),Cx3,y3)是圖象上的三個(gè)點(diǎn),|+m -m|<|m-1-m|<|+m -m |,

y2y3y1.

故選A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,點(diǎn)的中點(diǎn),點(diǎn)、分別是線段及其延長(zhǎng)線上,且,給出下列條件:①;;,從中選擇一個(gè)條件使四邊形是菱形,并給出證明,你選擇的條件是________(只填寫(xiě)序號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,點(diǎn)A、B、Cx軸上,點(diǎn)D、Ey軸上,OA=OD=2,OC=OE=4,B為線段OA的中點(diǎn),直線AD與經(jīng)過(guò)B、E、C三點(diǎn)的拋物線交于F、G兩點(diǎn),與其對(duì)稱(chēng)軸交于M,點(diǎn)P為線段FG上一個(gè)動(dòng)點(diǎn)(與F、G不重合),PQy軸與拋物線交于點(diǎn)Q.

(1)求經(jīng)過(guò)B、E、C三點(diǎn)的拋物線的解析式;

(2)判斷△BDC的形狀,并給出證明;當(dāng)P在什么位置時(shí),以P、O、C為頂點(diǎn)的三角形是等腰三角形,并求出此時(shí)點(diǎn)P的坐標(biāo);

(3)若拋物線的頂點(diǎn)為N,連接QN,探究四邊形PMNQ的形狀:①能否成為菱形;②能否成為等腰梯形?若能,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=﹣+bx+cx軸于點(diǎn)A﹣2,0)和點(diǎn)B,交y軸于點(diǎn)C0,3),點(diǎn)Dx軸上一動(dòng)點(diǎn),連接CD,將線段CD繞點(diǎn)D旋轉(zhuǎn)得到DE,過(guò)點(diǎn)E作直線lx軸,垂足為H,過(guò)點(diǎn)CCFlF,連接DF

1)求拋物線解析式;

2)若線段DECD繞點(diǎn)D順時(shí)針旋轉(zhuǎn)90°得到,求線段DF的長(zhǎng);

3)若線段DECD繞點(diǎn)D旋轉(zhuǎn)90°得到,且點(diǎn)E恰好在拋物線上,請(qǐng)求出點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】模型建立:

(1)如圖1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直線ED經(jīng)過(guò)點(diǎn)C,過(guò)AADEDD,過(guò)BBEEDE

求證:△BEC≌△CDA

模型應(yīng)用:

(2)已知直線l1y=x+4y軸交與A點(diǎn),將直線l1繞著A點(diǎn)順時(shí)針旋轉(zhuǎn)45°l2,如圖2,求l2的函數(shù)解析式.

(3)如圖3,矩形ABCOO為坐標(biāo)原點(diǎn),B的坐標(biāo)為(86),AC分別在坐標(biāo)軸上,P是線段BC上動(dòng)點(diǎn),設(shè)PC=m,已知點(diǎn)D在第一象限,且是直線y=2x-6上的一點(diǎn),若△APD是不以A為直角頂點(diǎn)的等腰Rt△,請(qǐng)直接寫(xiě)出點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:如圖(1),若分別以ABC的三邊ACBC、AB為邊向三角形外側(cè)作正方形ACDE、BCFGABMN,則稱(chēng)這三個(gè)正方形為ABC的外展三葉正方形,其中任意兩個(gè)正方形為ABC的外展

雙葉正方形.

(1)作ABC的外展雙葉正方形ACDEBCFG,記ABC,DCF的面積分別為S1S2

①如圖(2),當(dāng)∠ACB=90°時(shí),求證:S1=S2;

②如圖(3),當(dāng)∠ACB≠90°時(shí),S1S2是否仍然相等,請(qǐng)說(shuō)明理由.

(2)已知ABC中,AC=3,BC=4,作其外展三葉正方形,記DCF、AEN、BGM的面積和為S,請(qǐng)利用圖(1)探究:當(dāng)∠ACB的度數(shù)發(fā)生變化時(shí),S的值是否發(fā)生變化?若不變,求出S的值;若變化,求出S的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】王師傅承包了一片池塘養(yǎng)水產(chǎn)品,他用總長(zhǎng)為88m的圍網(wǎng)圍成如圖所示的5個(gè)區(qū)域,其中②③④⑤四個(gè)區(qū)域面積相等.設(shè)AH=xm,整個(gè)矩形區(qū)域的面積為ym2

(1)求yx之間的函數(shù)關(guān)系式,并注明自變量x的取值范圍;

(2)當(dāng)x為何值時(shí),y取最大值?最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著人們經(jīng)濟(jì)收入的不斷提高,汽車(chē)已越來(lái)越多地進(jìn)入到各個(gè)家庭.某大型超市為緩解停車(chē)難問(wèn)題,建筑設(shè)計(jì)師提供了樓頂停車(chē)場(chǎng)的設(shè)計(jì)示意圖.按規(guī)定,停車(chē)場(chǎng)坡道口上坡要張貼限高標(biāo)志,以便告知車(chē)輛能否安全駛?cè)耄鐖D,地面所在的直線ME與樓頂所在的直線AC是平行的,CD的厚度為0.5m,求出汽車(chē)通過(guò)坡道口的限高DF的長(zhǎng)(結(jié)果精確到0.1m,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的一元二次方程有實(shí)數(shù)根.

(1)m的值;

(2)先作的圖象關(guān)于x軸的對(duì)稱(chēng)圖形,然后將所作圖形向左平移3個(gè)單位長(zhǎng)度,再向上平移2個(gè)單位長(zhǎng)度,寫(xiě)出變化后圖象的解析式;

(3)在(2)的條件下,當(dāng)直線y=2x+n(n≥m)與變化后的圖象有公共點(diǎn)時(shí),求的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案