如圖,已知直線與x軸、y軸分別交于點(diǎn)A、B,線段AB為直角邊在第一象限內(nèi)作等腰Rt△ABC,∠BAC=90°.

(1)求△AOB的面積;
(2)求點(diǎn)C坐標(biāo);
(3)點(diǎn)P是x軸上的一個(gè)動(dòng)點(diǎn),設(shè)P(x,0)
①請(qǐng)用x的代數(shù)式表示PB2、PC2;
②是否存在這樣的點(diǎn)P,使得|PC-PB|的值最大?如果不存在,請(qǐng)說明理由;
如果存在,請(qǐng)求出點(diǎn)P的坐標(biāo).

(1)6;(2)(7,4);(3)①,;②存在這樣的P點(diǎn),P(3,0).

解析試題分析:(1)先由直線求出A、B兩點(diǎn)的橫坐標(biāo),即OA、OB的長,從而可求出△AOB的面積;
(2)過C點(diǎn)作CD⊥x軸,垂足為D,構(gòu)造Rt△ADC.易證△OAB≌△DCA,從而可求出CD=4,OD=7,所以C點(diǎn)坐標(biāo)為(7,4);
(3)①由(2)可知,PD=7-x,在Rt△OPB中,,Rt△PCD中,
②存在這樣的P點(diǎn).P(3,0).
試題解析:(1)由直線,令y=0,得OA=x=4,令x=0,得OB=y=3,∴S△AOB=×4×3=6;
(2)過C點(diǎn)作CD⊥x軸,垂足為D,

∵∠BAO+∠CAD=90°,∠ACD+∠CAD=90°,
∴∠BAO=∠ACD,
又∵AB=AC,∠AOB=∠CDA=90°,
∴△OAB≌△DCA,
∴CD=OA=4,AD=OB=3,則OD=4+3=7,
∴C(7,4);
(3)①由(2)可知,PD=7-x,
在Rt△OPB中,PB2=OP2+OB2=x2+9,
Rt△PCD中,PC2=PD2+CD2=(7-x)2+16=x2-14x+65,
②存在這樣的P點(diǎn).
設(shè)B點(diǎn)關(guān)于 x軸對(duì)稱的點(diǎn)為B′,則B′(0,-3),
連接CB′,設(shè)直線B′C解析式為y=kx+b,將B′、C兩點(diǎn)坐標(biāo)代入,得
解得
所以,直線B′C解析式為y=x-3,
令y=0,得P(3,0),此時(shí)|PC-PB|的值最大,
考點(diǎn):一次函數(shù)綜合題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

為保護(hù)學(xué)生視力,課桌椅的高度都是按一定的關(guān)系配套設(shè)計(jì)的,研究表明:假設(shè)課桌的高度為 cm,椅子的高度為 cm,則應(yīng)是的一次函數(shù),下表列出兩套符合條件的課桌椅的高度:

 
第一套
第二套
椅子高度(cm)
40
37
課桌高度(cm)
75
70
(1)請(qǐng)確定的函數(shù)關(guān)系式.
(2)現(xiàn)有一把高39 cm的椅子和一張高78.2 cm的課桌,它們是否配套?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

若方程組的解滿足,求關(guān)于的函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

某農(nóng)戶種植一種經(jīng)濟(jì)作物,總用水量y(米3)與種植時(shí)間x(天)之間的函數(shù)關(guān)系式圖

(1)第20天的總用水量為多少米3
(2)當(dāng)x≥20時(shí),求y與x之間的函數(shù)關(guān)系式;
(3)種植時(shí)間為多少天時(shí),總用水量達(dá)到7000米3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知一次函數(shù)的圖象經(jīng)過點(diǎn),且與函數(shù)的圖象相交于點(diǎn)
(1)求的值;
(2)若函數(shù)的圖象與軸的交點(diǎn)是B,函數(shù)的圖象與軸的交點(diǎn)是C,求四邊形的面積(其中O為坐標(biāo)原點(diǎn)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知y+3與x+2成正比例,且當(dāng)x=3時(shí),y=7.
(1)寫出y與x之間的函數(shù)關(guān)系式;
(2)當(dāng)x=-1時(shí),求y的值;
(3)當(dāng)y=0時(shí),求x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

(1)觀察與發(fā)現(xiàn):將矩形紙片AOCB折疊,使點(diǎn)C與點(diǎn)A重合,點(diǎn)B落在點(diǎn)B′處(如圖),折痕為EF.小明發(fā)現(xiàn)△AEF為等腰三角形,你同意嗎?請(qǐng)說明理由.

(2)實(shí)踐與應(yīng)用:以點(diǎn)O為坐標(biāo)原點(diǎn),分別以矩形的邊OC、OA為x軸、y軸建立如圖所示的直角坐標(biāo)系,若頂點(diǎn)B的坐標(biāo)為(9,3),請(qǐng)求出折痕EF的長及EF所在直線的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

某商場銷售甲、乙兩種品牌的智能手機(jī),這兩種手機(jī)的進(jìn)價(jià)和售價(jià)如下表所示:

 


進(jìn)價(jià)(元/部)
4000
2500
售價(jià)(元/部)
4300
3000
該商場計(jì)劃購進(jìn)兩種手機(jī)若干部,共需15.5萬元,預(yù)計(jì)全部銷售后可獲毛利潤共2.1萬元.
(毛利潤=(售價(jià)﹣進(jìn)價(jià))×銷售量)
(1)該商場計(jì)劃購進(jìn)甲、乙兩種手機(jī)各多少部?
(2)通過市場調(diào)研,該商場決定在原計(jì)劃的基礎(chǔ)上,減少甲種手機(jī)的購進(jìn)數(shù)量,增加乙種手機(jī)的購進(jìn)數(shù)量.已知乙種手機(jī)增加的數(shù)量是甲種手機(jī)減少的數(shù)量的2倍,而且用于購進(jìn)這兩種手機(jī)的總資金不超過16萬元,該商場怎樣進(jìn)貨,使全部銷售后獲得的毛利潤最大?并求出最大毛利潤.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

某校為了實(shí)施“大課間”活動(dòng),計(jì)劃購買籃球、排球共60個(gè),跳繩120根.已知一個(gè)籃球70元,一個(gè)排球50元,一根跳繩10元.設(shè)購買籃球x個(gè),購買籃球、排球和跳繩的總費(fèi)用為y元.
(1)求y與x之間的函數(shù)關(guān)系式;
(2)若購買上述體育用品的總費(fèi)用為4 700元,問籃球、排球各買多少個(gè)?

查看答案和解析>>

同步練習(xí)冊(cè)答案