【題目】ABC中,若OBC邊的中點(diǎn),則必有:AB2+AC2=2AO2+2BO2成立.依據(jù)以上結(jié)論,解決如下問題:如圖,在矩形DEFG中,已知DE=4,EF=3,點(diǎn)P在以DE為直徑的半圓上運(yùn)動(dòng),則PF2+PG2的最小值為( 。

A. B. C. 34 D. 10

【答案】D

【解析】

設(shè)點(diǎn)MDE的中點(diǎn),點(diǎn)NFG的中點(diǎn),連接MN,則MN、PM的長(zhǎng)度是定值,利用三角形的三邊關(guān)系可得出NP的最小值,再利用PF2+PG2=2PN2+2FN2即可求出結(jié)論.

設(shè)點(diǎn)MDE的中點(diǎn),點(diǎn)NFG的中點(diǎn),連接MN交半圓于點(diǎn)P,此時(shí)PN取最小值.

DE=4,四邊形DEFG為矩形,

GF=DE,MN=EF,

MP=FN=DE=2,

NP=MN-MP=EF-MP=1,

PF2+PG2=2PN2+2FN2=2×12+2×22=10.

故選D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=4,AC=3,BC=5,DE是BC的垂直平分線,DE分別交BC、AB于點(diǎn)D、E.

(1)求證:△ABC為直角三角形.

(2)求AE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,AD平分∠BAC,BDAD,垂足為D,過DDEAC,交ABE,若BD=7AD=24,求線段DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)A(﹣6,0),C(0,2).將矩形OABC繞點(diǎn)O順時(shí)針方向旋轉(zhuǎn),使點(diǎn)A恰好落在OB上的點(diǎn)A1處,則點(diǎn)B的對(duì)應(yīng)點(diǎn)B1的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在4×8的網(wǎng)格紙中,每個(gè)小正方形的邊長(zhǎng)都為1,動(dòng)點(diǎn)P、Q分別從點(diǎn)DA同時(shí)出發(fā)向右移動(dòng),點(diǎn)P的運(yùn)動(dòng)速度為每秒2個(gè)單位,點(diǎn)Q的運(yùn)動(dòng)速度為每秒1個(gè)單位,當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)C時(shí),兩個(gè)點(diǎn)都停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t0t4).

1)請(qǐng)?jiān)?/span>4×8的網(wǎng)格紙圖①中畫出t3秒時(shí)的線段PQ.并求其長(zhǎng)度;

2)若MBC的中點(diǎn),PQM的面積為S,請(qǐng)用含有t的代數(shù)式來表示S

3)當(dāng)t為多少時(shí),△PQB是以PQ為腰的等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在△ABC中,AB=AC,BC=12厘米,點(diǎn)D為AB上一點(diǎn)且BD=8厘米,點(diǎn)P在線段BC上以2厘米/秒的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t,同時(shí),點(diǎn)Q在線段CA上由C點(diǎn)向A點(diǎn)運(yùn)動(dòng).

(1)用含t的式子表示PC的長(zhǎng)為_______________;

(2)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)p的運(yùn)動(dòng)速度相等,當(dāng)t=2時(shí),三角形BPD與三角形CQP是否全等,請(qǐng)說明理由;

(3)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等,請(qǐng)求出點(diǎn)Q的運(yùn)動(dòng)速度是多少時(shí),能夠使三角形BPD與三角形CQP全等?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一塊三角形的土地要分給甲、乙、丙三家農(nóng)戶. 如圖,如果∠A=90°,∠B=30°.

1)這三家農(nóng)戶所得土地的大小、形狀都相同,請(qǐng)你在圖中試著分一分,并簡(jiǎn)潔說明你的理由.

2)要使這三家農(nóng)戶所得土地是面積相等的三角形,且有一個(gè)公共頂點(diǎn),請(qǐng)你在備用圖中試著分一分,并簡(jiǎn)潔說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場(chǎng)進(jìn)行有獎(jiǎng)促銷活動(dòng),規(guī)定顧客購(gòu)物達(dá)到一定金額就可以獲得一次轉(zhuǎn)動(dòng)轉(zhuǎn)盤的機(jī)會(huì)(如圖),當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動(dòng)時(shí)指針落在哪一區(qū)域就可獲得相應(yīng)的獎(jiǎng)品(若指針落在兩個(gè)區(qū)域的交界處,則重新轉(zhuǎn)動(dòng)轉(zhuǎn)盤).

轉(zhuǎn)動(dòng)轉(zhuǎn)盤的次數(shù)n

100

150

200

500

800

1000

落在“10元兌換券的次數(shù)m

68

111

136

345

564

701

落在“10元兌換券的頻率

0.68

a

0.68

0.69

b

0.701

(1)a的值為   ,b的值為   ;

(2)假如你去轉(zhuǎn)動(dòng)該轉(zhuǎn)盤一次,獲得“10元兌換券的概率約是   ;(結(jié)果精確到0.01)

(3)根據(jù)(2)的結(jié)果,在該轉(zhuǎn)盤中表示“20元兌換券區(qū)域的扇形的圓心角大約是多少度?(結(jié)果精確到1°)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個(gè)鈍角三角形中,如果一個(gè)角是另一個(gè)角的3倍,這樣的三角形我們稱之為智慧三角形.如,三個(gè)內(nèi)角分別為120°,40°,20°的三角形是智慧三角形”.如圖,∠MON=60°,在射線OM上找一點(diǎn)A,過點(diǎn)AABOMON于點(diǎn)B,以A為端點(diǎn)作射線AD,交射線OB于點(diǎn)C.

(1)ABO的度數(shù)為_____°,AOB_____(填不是”) “智慧三角形”;

(2)若∠OAC=20°,求證:△AOC智慧三角形”;

(3)當(dāng)△ABC智慧三角形時(shí),求∠OAC的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案