【題目】如圖,四邊形ABCD中,∠DAB=∠ABC=90°,AB=BC,E是AB的中點,CE⊥BD.
(1)求證:BE=AD;
(2)求證:AC是線段ED的垂直平分線;
(3)△DBC是等腰三角形嗎?并說明理由.
【答案】(1)證明見解析;(2)證明見解析;(3)△DBC是等腰三角形,證明見解析.
【解析】
(1)利用已知條件證明△DAB≌△EBC(ASA),根據(jù)全等三角形的對應邊相等即可得到AD=BE;
(2)分別證明AD=AE,CE=CE,根據(jù)線段垂直平分線的逆定理即可解答;
(3)△DBC是等腰三角形,由△DAB≌△EBC,得到DB=EC,又有△AEC≌△ADC,得到EC=DC,所以DB=DC,即可解答.
解:(1)∵∠ABC=90°,
∴∠ABD+∠DBC=90°,
∵CE⊥BD,
∴∠BCE+∠DBC=90°,
∴∠ABD=∠BCE,
∵AD∥BC,
∴∠DAB=∠EBC,
在△DAB和△EBC中,
,
∴△DAB≌△EBC(ASA)
∴AD=BE
(2)∵E是AB的中點,即AE=BE,
∵BE=AD,
∴AE=AD,
∴點A在ED的垂直平分線上(到角兩邊相等的點在角的平分線上),
∵AB=BC,∠ABC=90°,
∴∠BAC=∠BCA=45°,
∵∠BAD=90°,
∴∠BAC=∠DAC=45°,
在△EAC和△DAC中,
,
∴△EAC≌△DAC(SAS)
∴CE=CD,
∴點C在ED的垂直平分線上
∴AC是線段ED的垂直平分線.
(3)△DBC是等腰三角形
∵△DAB≌△EBC,
∴DB=EC
∵△AEC≌△ADC,
∴EC=DC,
∴DB=DC,
∴△DBC是等腰三角形.
科目:初中數(shù)學 來源: 題型:
【題目】已知如圖,A、E、F、C四點共線,BF=DE,AB=CD.
(1)請你添加一個條件,使△DEC≌△BFA;
(2)在(1)的基礎上,求證:DE∥BF.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列條件中,能判定△ABC為直角三角形的是( ).
A.∠A=2∠B-3∠CB.∠A+∠B=2∠CC.∠A-∠B=30°D.∠A=∠B=∠C
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=6,AC=4,∠ABC和∠ACB的平分線交于點E,過點E作MN∥BC分別交AB、AC于M、N,則△AMN的周長為( 。
A. 12B. 10C. 8D. 不確定
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在有些情況下,不需要計算出結果也能把絕對值符號去掉,例如:|6+7|=6+7;|7﹣6|=7﹣6;|6﹣7|=7﹣6;|﹣6﹣7|=6+7.
(1)根據(jù)上面的規(guī)律,把下列各式寫成去掉絕對值符號的形式:
①|7+21|=______;②|﹣+0.8|=______;③=______;
(2)用合理的方法進行簡便計算:
(3)用簡單的方法計算:|﹣|+|﹣|+|﹣|+…+|﹣|.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點B、E、C、F在同一條直線上,BE=CF,∠B=∠DEF,請你添加一個合適的條件,使△ABC≌△DEF,其中不正確條件是( )
A. AB=DEB. AC=DFC. ∠A=∠DD. ∠ACB=∠F
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某學習小組做“用頻率估計概率”的實驗時,統(tǒng)計了某一結果出現(xiàn)的頻率,繪制了如下的表格,則符合這一結果的實驗最有可能的是( 。
實驗次數(shù) | 100 | 200 | 300 | 500 | 800 | 1000 | 2000 |
頻率 | 0.365 | 0.328 | 0.330 | 0.334 | 0.336 | 0.332 | 0.333 |
A.一副去掉大小王的普通撲克牌洗勻后,從中任抽一張牌的花色是紅桃
B.在“石頭、剪刀、布”的游戲中,小明隨機出的是“剪刀”
C.拋一個質地均勻的正六面體骰子,向上的面點數(shù)是5
D.拋一枚硬幣,出現(xiàn)反面的概率
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O的直徑AC與弦BD相交于點F,點E是DB延長線上一點,∠EAB=∠ADB.
(1)求證:EA是⊙O的切線;
(2)已知點B是EF的中點,AF=4,CF=2,求AE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖1,已知△ABC,BF平分外角∠CBP,CF平分外角∠BCQ.試確定∠A和∠F的數(shù)量關系;
(2)如圖2,已知△ABC,BF和BD三等分外角∠CBP,CF和CE三等分外角∠BCQ.試確定∠A和∠F的數(shù)量關系;
(3)如圖3,已知△ABC,BF、BD和BM四等分外角∠CBP,CF、CE和CN四等分外角∠BCQ.試確定∠A和∠F的數(shù)量關系;
(4)如圖4,已知△ABC,將外角∠CBP進行n等分,BF是臨近BC邊的等分線,將外角∠BCQ進行n等分,CF是臨近BC邊的等分線,試確定∠A和∠F的數(shù)量關系.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com