【題目】如果關(guān)于x的一元二次方程ax2+bx+c=0a0)中的二次項(xiàng)系數(shù)與常數(shù)項(xiàng)之和等于一次項(xiàng)系數(shù),求證:-1必是該方程的一個(gè)根.

【答案】見解析

【解析】

二次項(xiàng)系數(shù)與常數(shù)項(xiàng)之和等于一次項(xiàng)系數(shù)即a+c=b,得到a-b+c=0;在關(guān)于x的一元二次方程ax2+bx+c=0a0)中令x=-1是就得到a-b+c=0-1必是該方程的一個(gè)根.

證明:根據(jù)題意,得:a+c=b,即ab+c=0;

當(dāng)x=1時(shí),ax2+bx+c=a(1) 2+b(1)+c=ab+c=0,

1必是關(guān)于x的一元二次方程ax 2+bx+c=0的一個(gè)根。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖坐標(biāo)系中,O(0,0) ,A(6,6),B(12,0).將OAB沿直線CD折疊,使點(diǎn)A恰好落在線段OB上的點(diǎn)E處,若OE,則CE : DE的值是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知矩形ABCD,把矩形沿直線AC折疊,點(diǎn)B落在點(diǎn)E處,連接DE、BE,若△ABE是等邊三角形,則=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將一張長(zhǎng)方形紙片與一張直角三角形紙片(∠EFG=90°)按如圖所示的位置擺放,
使直角三角形紙片的一個(gè)頂點(diǎn)E恰好落在長(zhǎng)方形紙片的一邊AB上,已知∠BEF=21°,則
∠CMF=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知x=﹣2是關(guān)于x的方程2x2+ax﹣a2=0的一個(gè)根,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在紀(jì)念中國(guó)抗日戰(zhàn)爭(zhēng)勝利70周年之際,某公司決定組織員工觀看抗日戰(zhàn)爭(zhēng)題材的影片,門票有甲乙兩種,甲種票比乙種票每張貴6元;買甲種票10張,乙種票15張共用去660元.

(1)求甲、乙兩種門票每張各多少元?

(2)如果公司準(zhǔn)備購(gòu)買35張門票且購(gòu)票費(fèi)用不超過1000元,那么最多可購(gòu)買多少?gòu)埣追N票?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn)P(2,﹣3)關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)是( )
A.(﹣2,﹣3)
B.(2,3)
C.(﹣2,3)
D.(﹣3,2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,E是直線AB,CD內(nèi)部一點(diǎn),AB∥CD,連接EA,ED.

(1)探究猜想:
①若∠A=20°,∠D=40°,則∠AED=
②猜想圖①中∠AED,∠EAB,∠EDC的關(guān)系,并用兩種不同的方法證明你的結(jié)論.
(2)拓展應(yīng)用:
如圖②,射線FE與l1 , l2交于分別交于點(diǎn)E、F,AB∥CD,a,b,c,d分別是被射線FE隔開的4個(gè)區(qū)域(不含邊界,其中區(qū)域a,b位于直線AB上方,P是位于以上四個(gè)區(qū)域上的點(diǎn),猜想:∠PEB,∠PFC,∠EPF的關(guān)系(任寫出兩種,可直接寫答案).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列從左到右邊的變形,是因式分解的是(

A(3x)(3+x)=9x2

B、(y+1)(y3)=(3y)(y+1)

C4yz2y2z+z=2y(2zyz)+z

D、8x2+8x2=2(2x1)2

查看答案和解析>>

同步練習(xí)冊(cè)答案