【題目】如圖,平行四邊形ABCD中,∠B=60°.GCD的中點,E是邊AD上的動點,EG的延長線與BC的延長線交于點F,連結CE,DF,下列說法不正確的是( )

A. 四邊形CEDF是平行四邊形

B. 時,四邊形CEDF是矩形

C. 時,四邊形CEDF是菱形

D. 時,四邊形CEDF是菱形

【答案】C

【解析】分析:根據(jù)已知條件易證△CFG≌△EDG,可得FG=EG,CG=DG,根據(jù)對角線互相平分的四邊形為平行四邊形即可判定四邊形CEDF是平行四邊形;再由CE⊥AD,根據(jù)有一個角為直角的平行四邊形為矩形即可判定平行四邊形CEDF是矩形;再證明△CED為等邊三角形,可得CE=DE,根據(jù)一組鄰邊相等的平行四邊形為菱形即可得平行四邊形CEDF是菱形;采用排除法即可得答案.

詳解:

∵四邊形ABCD是平行四邊形,

∴CF∥ED,

∴∠FCD=∠GCD,

∵GCD的中點,

∴CG=DG,

在△FCG和△EDG中,

,

∴△CFG≌△EDG(ASA),

∴FG=EG,

∵CG=DG,

∴四邊形CEDF是平行四邊形;

∵CE⊥AD,

∴平行四邊形CEDF是矩形;

四邊形ABCD是平行四邊形,

B=∠ADC=60°;

∵∠AEC=120°,

∴∠DEC=60°;

∴∠DEC=∠ADC=60°,

∴△CED為等邊三角形,

∴CE=DE,

平行四邊形CEDF是菱形;

綜上,選項A、B、D正確,選項D錯誤,故選C.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,海中一漁船在A處與小島C相距70海里,若該漁船由西向東航行30海里到達B處,此時測得小島C位于B的北偏東30°方向上,則該漁船此時與小島C之間的距離是_____海里.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1是線段上一動點,沿的路線以的速度往返運動1次,是線段的中點,,設點的運動時間為.

1)當時,則線段 ,線段 .

2)用含的代數(shù)式表示運動過程中的長.

3)在運動過程中,若的中點為,問的長是否變化?與點的位置是否無關?

4)知識遷移:如圖2,已知,過角的內(nèi)部任一點畫射線,若分別平分,問∠EOC的度數(shù)是否變化?與射線的位置是否無關?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=x+cx軸交于點A3,0),與y軸交于點B,拋物線y=x2+bx+c經(jīng)過點A,B

1)求點B的坐標和拋物線的解析式;

2Mm,0)為x軸上一動點,過點M且垂直于x軸的直線與直線AB及拋物線分別交于點PN

①點M在線段OA上運動,若以B,P,N為頂點的三角形與APM相似,求點M的坐標;

②點Mx軸上自由運動,若三個點MP,N中恰有一點是其它兩點所連線段的中點(三點重合除外),則稱M,PN三點為共諧點.請直接寫出使得M,P,N三點成為共諧點m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】夏季來臨,商場準備購進甲、乙兩種空調(diào)已知甲種空調(diào)每臺進價比乙種空調(diào)多500元,用40000元購進甲種空調(diào)的數(shù)量與用30000元購進乙種空調(diào)的數(shù)量相同請解答下列問題:

求甲、乙兩種空調(diào)每臺的進價;

若甲種空調(diào)每臺售價2500元,乙種空調(diào)每臺售價1800元,商場欲同時購進兩種空調(diào)20臺,且全部售出,請寫出所獲利潤與甲種空調(diào)之間的函數(shù)關系式;

的條件下,若商場計劃用不超過36000元購進空調(diào),且甲種空調(diào)至少購進10臺,并將所獲得的最大利潤全部用于為某敬老院購買1100臺的A型按摩器和700臺的B型按摩器直接寫出購買按摩器的方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】現(xiàn)有甲、乙兩個體育用品商店出售乒乓球拍和乒乓球,球拍每塊價格為48,乒乓球每個價格為2元,已知甲店制定的優(yōu)惠方法是買--塊球拍送6個乒乓球,乙店按總價的收費,某球隊需要購買球拍4,乒乓球(不少于24)

1)試用含有的代數(shù)式表示甲、乙兩店購買球拍4,乒乓球個的費用.

2)當需要購買240個乒乓球時,選擇哪家商店購買更優(yōu)惠?請說明理由.

3)當購買多少個乒乓球時,兩個商店的收費一樣多?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】按要求畫圖,并解答問題

1)如圖,取BC邊的中點D,畫射線AD;

2)分別過點BCBEAD于點E,CFAD于點F

3BECF的位置關系是   ;通過度量猜想BECF的數(shù)量關系是   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:點為直線上一點, ,射線平分,設

1)如圖①所示,若,則    

2)若將繞點旋轉至圖②的位置,試用含的代數(shù)式表示的大小,并說明理由;

3)若將繞點旋轉至圖③的位置,則用含的代數(shù)式表示的大小,即    

4)若將繞點旋轉至圖④的位置,繼續(xù)探究的數(shù)量關系,則用含的代數(shù)式表示的大小,即    

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校準備為七年級學生開設6門選修課,選取了若干學生進行了我最喜歡的一門選修課調(diào)查,將調(diào)查結果繪制成了如圖所示的統(tǒng)計圖表(不完整).

選修課

人數(shù)

40

60

100

下列說法不正確的是(

A.這次被調(diào)查的學生人數(shù)為400B.對應扇形的圓心角為

C.喜歡選修課的人數(shù)為72D.喜歡選修課的人數(shù)最少

查看答案和解析>>

同步練習冊答案