分析 由垂徑定理可知AC=6$\sqrt{3}$,在Rt△ACO中利用勾股定理可求得AO=12,由特殊銳角三角函數(shù)可知∠AOC=60°,∠AOB=120°,所以管道的長度為$\frac{1}{3}$圓周長.
解答 解:∵OC⊥AB,AB=12$\sqrt{3}$,
∴AC=6$\sqrt{3}$.
設(shè)圓O的半徑為r,則OA=r,OC=r-6.
在Rt△ACO中,由勾股定理得:AO2=OC2+AC2,即${r}^{2}=(r-6)^{2}+(6\sqrt{3})^{2}$.
解得:AO=12.
∴$\frac{AC}{AO}=\frac{6\sqrt{3}}{12}$=$\frac{\sqrt{3}}{2}$.
∴∠AOC=60°.
∴∠AOB=120°.
∴直管的長度=$\frac{1}{3}×2π×r$=$\frac{1}{3}×2×π×12$=8πm.
點(diǎn)評 本題主要考查的是垂徑定理、勾股定理、特殊銳角三角函數(shù)值,求得圓O的半徑和∠AOB的度數(shù)是解題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 60° | B. | 70° | C. | 80° | D. | 90° |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com