【題目】如圖,已知O為直線AB上一點(diǎn),過點(diǎn)O向直線AB上方引三條射線OC、OD、OE,且OC平分∠AOD,∠2=3∠1.
(1)若∠1=18°,求∠COE的度數(shù);
(2)若∠COE=70°,求∠2的度數(shù).
【答案】(1)72°.(2)60°.
【解析】
(1)根據(jù)∠1求出∠2,根據(jù)平角求出∠AOD, 再根據(jù)OC平分∠AOD求出∠3即可求出∠COE的度數(shù);
(2)所求角和∠1有關(guān),∠1較小,應(yīng)設(shè)∠1為未知量.根據(jù)∠COE的度數(shù),可表示出∠3,也就表示出了∠4,而這4個(gè)角組成一個(gè)平角.
(1)∵∠1=18°,∠2=3∠1,
∴∠2=54°,
∴∠AOD=180°-∠1-∠2=180°-18°-54°=108°,
∵OC平分∠AOD,
∴∠3=54°,
∴∠COE=∠1+∠3=18°+54°=72°.
(2)設(shè)∠1=x°,∵OC平分∠AOD,∠COE=∠1+∠3=70°,
∴∠3=∠4=70°-x°.
又∵∠1+∠2+∠3+∠4=180°,
∴x°+∠2+2(70°-x°)=180°,
∴∠2=40°+x°,
∵∠2=3∠1,∴40°+x°=3x°,
解得x=20,
∴∠2=3∠1=3×20°=60°,
即∠2的度數(shù)為60°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,P,Q分別是BC,AC上的點(diǎn),作PR⊥AB,PS⊥AC,垂足分別為R,S,若AQ=PQ,PR=PS,則這四個(gè)結(jié)論中正確的有( )
①PA平分∠BAC;②AS=AR;③QP∥AR;④△BRP≌△CSP.
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(8分)如圖,△ABC的兩條高AD、BE相交于點(diǎn)H,且AD=BD,試說明下列結(jié)論成立的理由。(1)∠DBH=∠DAC;(2)△BDH≌△ADC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,過點(diǎn)A作AE⊥BC,垂足為點(diǎn)E,連接DE,F(xiàn)為線段DE上一點(diǎn),且∠AFE=∠B.
(1)求證:△ADF∽△DEC;
(2)若AB=4,AD=3 , AF=2 , 求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直角三角板的直角頂點(diǎn)O在直線AB上,OC,OD是三角板的兩條直角邊,OE平分∠AOD.
(1)若∠COE=20°,則∠BOD= ;若∠COE=α,則∠BOD= (用含α的代數(shù)式表示)
(2)當(dāng)三角板繞O逆時(shí)針旋轉(zhuǎn)到圖2的位置時(shí),其它條件不變,試猜測(cè)∠COE與∠BOD之間有怎樣的數(shù)量關(guān)系?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,BE⊥AC于E,且D、E分別是AB、AC的中點(diǎn).延長(zhǎng)BC至點(diǎn)F,使CF=CE.
(1)求∠ABC的度數(shù);
(2)求證:BE=FE;
(3)若AB=2,求△CEF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=x+6與y軸交于點(diǎn)A,與x軸交于點(diǎn)B,點(diǎn)M是射線AB上一動(dòng)點(diǎn)(點(diǎn)M不與點(diǎn)A、B重合),以點(diǎn)M為圓心,MA長(zhǎng)為半徑的圓交y軸于另一點(diǎn)C,直線MC與x軸交于點(diǎn)D,點(diǎn)E是線段BD的中點(diǎn),射線ME交⊙M于點(diǎn)F,連接OF.
(1)若MA=2,求C點(diǎn)的坐標(biāo);
(2)若D點(diǎn)的坐標(biāo)為(4,0),求MC的長(zhǎng);
(3)當(dāng)OF=MA時(shí),直接寫出點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】嘉淇準(zhǔn)備完成題目:化簡(jiǎn):,發(fā)現(xiàn)系數(shù)“”印刷不清楚.
(1)他把“”猜成3,請(qǐng)你化簡(jiǎn):(3x2+6x+8)–(6x+5x2+2);
(2)他媽媽說:“你猜錯(cuò)了,我看到該題標(biāo)準(zhǔn)答案的結(jié)果是常數(shù).”通過計(jì)算說明原題中“”是幾?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x、y的多項(xiàng)式(m﹣2)+(n+3)xy2+3xy﹣5.
(1)若原多項(xiàng)式是五次多項(xiàng)式,求m、n的值;
(2)若原多項(xiàng)式是五次四項(xiàng)式,求m、n的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com