【題目】閱讀下面的例題及點(diǎn)撥,并解決問題:
例題:如圖①,在等邊中,是邊上一點(diǎn)(不含端點(diǎn)),是的外角的平分線上一點(diǎn),且.求證:.
點(diǎn)撥:如圖②,作,與的延長線相交于點(diǎn),得等邊,連接.易證:,可得;又,則,可得;由,進(jìn)一步可得又因?yàn)?/span>,所以,即:.
問題:如圖③,在正方形中,是邊上一點(diǎn)(不含端點(diǎn)),是正方形的外角的平分線上一點(diǎn),且.求證:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖二次函數(shù)的圖象與y軸正半軸相交,其頂點(diǎn)坐標(biāo)為()下列結(jié)論正確的是( )
A. abc>0B. a=b
C. a=4c-4D. 方程有兩個不相等的實(shí)數(shù)根
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示二次函數(shù)的圖像與一次函數(shù)的圖像交于、兩點(diǎn),點(diǎn)在點(diǎn)的右側(cè),直線分別與、軸交于、兩點(diǎn),其中.
(1)求、兩點(diǎn)的橫坐標(biāo);
(2)若是以為腰的等腰三角形,求的值;
(3)二次函數(shù)圖像的對稱軸與軸交于點(diǎn),是否存在實(shí)數(shù),使得,若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,禁止捕魚期間,某海上稽查隊(duì)在某海域巡邏,上午某一時(shí)刻在A處接到指揮部通知,在他們東北方向距離12海里的B處有一艘捕魚船,正在沿南偏東75°方向以每小時(shí)10海里的速度航行,稽查隊(duì)員立即乘坐巡邏船以每小時(shí)14海里的速度沿北偏東某一方向出發(fā),在C處成功攔截捕魚船,求巡邏船從出發(fā)到成功攔截捕魚船所用的時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中,,,是上的一個動點(diǎn).
(1)如圖1,連接,是對角線的中點(diǎn),連接.當(dāng)時(shí),求的長;
(2)如圖2,連接,過點(diǎn)作交于點(diǎn),連接,與交于點(diǎn).當(dāng)平分時(shí),求的長;
(3)如圖3,連接,點(diǎn)在上,將矩形沿直線折疊,折疊后點(diǎn)落在上的點(diǎn)處,過點(diǎn)作于點(diǎn),與交于點(diǎn),且.
①求的值;
②連接,與是否相似?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解家長關(guān)注孩子成長方面的狀況,某學(xué)校開展了針對家長的“您最關(guān)心孩子哪方面的成長”的主題調(diào)查,調(diào)查設(shè)置了“健康安全”,“日常學(xué)習(xí)”,“習(xí)慣養(yǎng)成”,“情感品質(zhì)”四個項(xiàng)目,并隨機(jī)抽取了部分家長進(jìn)行調(diào)查,要求家長只能選擇其中一個項(xiàng)目,根據(jù)調(diào)查結(jié)果繪制了如下兩幅不完整的統(tǒng)計(jì)圖.
(1)本次調(diào)查共抽取了多少名學(xué)生家長?
(2)通過計(jì)算補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若全校共有2000名學(xué)生家長,估計(jì)有多少位學(xué)生家長最關(guān)心孩子“情感品質(zhì)”方面的成長?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中,,,反比例函數(shù)()的圖像與矩形兩邊AB、BC分別交于點(diǎn)D、點(diǎn)E,且.
(1)求點(diǎn)D的坐標(biāo)和的值;
(2)求證:;
(3)若點(diǎn)是線段上的一個動點(diǎn),是否存在點(diǎn),使?若存在,求出此時(shí)點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在正方形ABCD中,點(diǎn)O是對角線AC的中點(diǎn),過O點(diǎn)的射線OM、ON分別交AB、BC于點(diǎn)E、F,且∠EOF=90°,BO、EF交于點(diǎn)P,下列結(jié)論:
①圖形中全等的三角形只有三對; ②△EOF是等腰直角三角形;③正方形ABCD的面積等于四邊形OEBF面積的4倍;④BE+BF=OA;⑤AE2+BE2=2OPOB.其中正確的個數(shù)有( 。﹤.
A. 4B. 3C. 2D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=2,與x軸的一個交點(diǎn)坐標(biāo)為(4,0),其部分圖象如圖所示,下列結(jié)論:①拋物線一定過原點(diǎn)②方程ax2+bx+c=0(a≠0)的解為x=0或x=4,③a﹣b+c<0;④當(dāng)0<x<4時(shí),ax2﹣bx+c<0;⑤當(dāng)x<2時(shí),y隨x增大而增大,其中結(jié)論正確的個數(shù)( 。
A. 1B. 2C. 3D. 4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com