【題目】正方形ABCD的邊長為3,E、F分別是AB、BC邊上的點,且∠EDF=45°.將△DAE繞點D逆時針旋轉90°,得到△DCM.
(1)求證:EF=FM
(2)當AE=1時,求EF的長.
【答案】(1)∵△DAE逆時針旋轉90°得到△DCM
∴DE=DM ∠EDM=90°
∴∠EDF + ∠FDM=90°
∵∠EDF=45°
∴∠FDM =∠EDM=45°
∵ DF= DF
∴△DEF≌△DMF
∴ EF=MF …
(2) 設EF=x ∵AE=CM=1
∴ BF=BM-MF=BM-EF=4-x
∵ EB=2
在Rt△EBF中,由勾股定理得
即
解之,得
【解析】(1)由折疊可得DE=DM,∠EDM為直角,可得出∠EDF+∠MDF=90°,由∠EDF=45°,得到∠MDF為45°,可得出∠EDF=∠MDF,再由DF=DF,利用SAS可得出三角形DEF與三角形MDF全等,由全等三角形的對應邊相等可得出EF=MF;
(2)由第一問的全等得到AE=CM=1,正方形的邊長為3,用AB-AE求出EB的長,再由BC+CM求出BM的長,設EF=MF=x,可得出BF=BM-FM=BM-EF=4-x,在直角三角形BEF中,利用勾股定理列出關于x的方程,求出方程的解得到x的值,即為EF的長.
科目:初中數(shù)學 來源: 題型:
【題目】在邊長為a的正方形中減掉一個邊長為b的小正方形(a>b)把余下的部分再剪拼成一個長方形.
(1)如圖1,陰影部分的面積是: ;
(2)如圖2,是把圖1重新剪拼成的一個長方形,陰影部分的面積是 ;
(3)比較兩陰影部分面積,可以得到一個公式是 ;
(4)運用你所得到的公式,計算:99.8×100.2.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,點C,D,E三點在同一條直線上,連接BD,BE.以下四個結論:
①BD=CE;②∠ACE+∠DBC=45°;③BD⊥CE;④∠BAE+∠DAC=180°.其中結論正確的個數(shù)是( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩地相距300千米,一輛貨車和一輛轎車先后從甲地出發(fā)向乙地,如圖,線段OA表示貨車離甲地距離y(千米)與時間x(小時)之間的函數(shù)關系;折線BCD表示轎車離甲地距離y(千米)與x(小時)之間的函數(shù)關系.請根據(jù)圖象解答下列問題:
(1)轎車到達乙地后,貨車距乙地多少千米?
(2)求線段CD對應的函數(shù)解析式.
(3)轎車到達乙地后,馬上沿原路以CD段速度返回,求貨車從甲地出發(fā)后多長時間再與轎車相遇(結果精確到0.01).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,長方形的長為15,寬為10,高為20,點離點的距離為5,螞蟻如果要沿著長方形的表面從點爬到點,需要爬行的最短距離是( )
A.35B.C.25D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的頂點P是BC中點,兩邊PE、PF分別交AB、AC于點E、F,當∠EPF在△ABC內(nèi)繞頂點P旋轉時(點E不與A、B重合),給出以下四個結論:①AE=CF;②△EPF是等腰直角三角形;③2S四邊形AEPF=S△ABC;④BE+CF=EF.上述結論中始終正確的有( 。
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商家用1200元購進了一批T恤,上市后很快售完,商家又用2800元購進了第二批這種T恤,所購數(shù)量是第一批購進量的2倍,但單價貴了5元.
(1)該商家購進的第一批T恤是多少件?
(2)若兩批T恤按相同的標價銷售,最后剩下20件按八折優(yōu)惠賣出,如果希望兩批T恤全部售完的利潤率不低于16%(不考慮其它因素),那么每件T恤的標價至少是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:ABC平移后得出△A1B1C1,點A(﹣1,3)平移后得A1(﹣4,2),又已知B1(﹣2,3),C1(1,﹣1),求B、C坐標,畫圖并說明經(jīng)過了怎樣的平移.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com