【題目】正方形ABCD的邊長為3,E、F分別是AB、BC邊上的點,且EDF=45°.將DAE繞點D逆時針旋轉90°,得到DCM.

1)求證:EF=FM

2)當AE=1時,求EF的長.

【答案】(1)∵△DAE逆時針旋轉90°得到DCM

DE=DM EDM=90°

∴∠EDF + FDM=90°

∵∠EDF=45°

∴∠FDM =EDM=45°

DF= DF

∴△DEF≌△DMF

EF=MF

(2) 設EF=x AE=CM=1

BF=BM-MF=BM-EF=4-x

EB=2

在RtEBF中,由勾股定理得

解之,得 

【解析】(1)由折疊可得DE=DM,EDM為直角,可得出EDF+MDF=90°,由EDF=45°,得到MDF為45°,可得出EDF=MDF,再由DF=DF,利用SAS可得出三角形DEF與三角形MDF全等,由全等三角形的對應邊相等可得出EF=MF;

(2)由第一問的全等得到AE=CM=1,正方形的邊長為3,用AB-AE求出EB的長,再由BC+CM求出BM的長,設EF=MF=x,可得出BF=BM-FM=BM-EF=4-x,在直角三角形BEF中,利用勾股定理列出關于x的方程,求出方程的解得到x的值,即為EF的長.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在邊長為a的正方形中減掉一個邊長為b的小正方形(ab)把余下的部分再剪拼成一個長方形.

1)如圖1,陰影部分的面積是: ;

2)如圖2,是把圖1重新剪拼成的一個長方形,陰影部分的面積是 ;

3)比較兩陰影部分面積,可以得到一個公式是 ;

4)運用你所得到的公式,計算:99.8×100.2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知在ABC,ADE中,∠BAC=DAE=90°AB=AC,AD=AE,點C,D,E三點在同一條直線上,連接BD,BE.以下四個結論:

BD=CE;②∠ACE+DBC=45°;③BDCE;④∠BAE+DAC=180°.其中結論正確的個數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩地相距300千米,一輛貨車和一輛轎車先后從甲地出發(fā)向乙地,如圖,線段OA表示貨車離甲地距離y(千米)與時間x(小時)之間的函數(shù)關系;折線BCD表示轎車離甲地距離y(千米)與x(小時)之間的函數(shù)關系.請根據(jù)圖象解答下列問題:

(1)轎車到達乙地后,貨車距乙地多少千米?

(2)求線段CD對應的函數(shù)解析式.

(3)轎車到達乙地后,馬上沿原路以CD段速度返回,求貨車從甲地出發(fā)后多長時間再與轎車相遇(結果精確到0.01).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,長方形的長為15,寬為10,高為20,點離點的距離為5,螞蟻如果要沿著長方形的表面從點爬到點,需要爬行的最短距離是(

A.35B.C.25D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解分式方程、分式的化簡求值

1

2 ;

3,其中 ;

4,其中x是不等式組的解集中符合題意的整數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的頂點PBC中點,兩邊PE、PF分別交AB、AC于點E、F,當∠EPF△ABC內(nèi)繞頂點P旋轉時(點E不與A、B重合),給出以下四個結論:①AE=CF;②△EPF是等腰直角三角形;③2S四邊形AEPF=SABC;④BE+CF=EF.上述結論中始終正確的有( 。

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商家用1200元購進了一批T恤,上市后很快售完,商家又用2800元購進了第二批這種T恤,所購數(shù)量是第一批購進量的2倍,但單價貴了5元.

(1)該商家購進的第一批T恤是多少件?

(2)若兩批T恤按相同的標價銷售,最后剩下20件按八折優(yōu)惠賣出,如果希望兩批T恤全部售完的利潤率不低于16%(不考慮其它因素),那么每件T恤的標價至少是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:ABC平移后得出△A1B1C1,點A(﹣1,3)平移后得A1(﹣4,2),又已知B1(﹣23),C11,﹣1),求BC坐標,畫圖并說明經(jīng)過了怎樣的平移.

查看答案和解析>>

同步練習冊答案