【題目】如圖,邊長為1的菱形ABCD中,∠DAB60度.連接對角線AC,以AC為邊作第二個菱形ACC1D1,使∠D1AC60°;連接AC1,再以AC1為邊作第三個菱形AC1C2D2,使∠D2AC160°;,按此規(guī)律所作的第n個菱形的邊長為_____

【答案】

【解析】

根據(jù)已知和菱形的性質(zhì)可分別求得AC,AC1,AC2的長,從而可發(fā)現(xiàn)規(guī)律根據(jù)規(guī)律不難求得第n個菱形的邊長.

解:連接DB,

∵四邊形ABCD是菱形,

ADABACDB,

∵∠DAB60°

∴△ADB是等邊三角形,

DBAD1

BM,

AM

AC,

同理可得AC1AC=(2,AC2AC13=(3,

按此規(guī)律所作的第n個菱形的邊長為(n1

故答案為(n1

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,半徑為且坐標原點為圓心的圓交軸、軸于點、、、,過圓上的一動點(不與重合)作,且右側(cè))

1)連結(jié),當時,則點的橫坐標是______

2)連結(jié),設線段的長為,則的取值范圍是____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題探究:

1)如圖,已知等邊△ABC,邊長為4,則△ABC的外接圓的半徑長為   

2)如圖,在矩形ABCD中,AB4,對角線BD與邊BC的夾角為30°,點E在為邊BC上且BEBC,點P是對角線BD上的一個動點,連接PE,PC,求△PEC周長的最小值.

問題解決:

3)為了迎接新年的到來,西安城墻舉辦了迎新年大型燈光秀表演.其中一個鐳射燈距城墻30米,鐳射燈發(fā)出的兩根彩色光線夾角為60°,如圖,若將兩根光線(AB,AC)和光線與城墻的兩交點的連接的線段(BC)看作一個三角形,記為△ABC,那么該三角形周長有沒有最小值?若有,求出最小值,若沒有,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,點EN,PG分別在邊AB,BC,CD,DA上,點M,FQ都在對角線BD上,且四邊形MNPQAEFG均為正方形,則的值等于

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC中,AB=BC,點OAC的中點,點PAC上的一個動點(點P不與點A,O,C重合).過點A,點C作直線BP的垂線,垂足分別為點E和點F,連接OE,OF.

(1)如圖1,請直接寫出線段OEOF的數(shù)量關(guān)系;

(2)如圖2,當∠ABC=90°時,請判斷線段OEOF之間的數(shù)量關(guān)系和位置關(guān)系,并說明理由

(3)若|CF﹣AE|=2,EF=2,當POF為等腰三角形時,請直接寫出線段OP的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知正方形ABCD中,,繞點A順時針旋轉(zhuǎn),它的兩邊分別交CB、或它們的延長線于點M、N,當繞點A旋轉(zhuǎn)到如圖,則

線段BM、DNMN之間的數(shù)量關(guān)系是______;

繞點A旋轉(zhuǎn)到如圖,線段BMDNMN之間有怎樣的數(shù)量關(guān)系?寫出猜想,并加以證明;

繞點A旋轉(zhuǎn)到如圖的位置時,線段BM、DNMN之間又有怎樣的數(shù)量關(guān)系?請直接寫出你的猜想.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABO的直徑,∠BAC90°,四邊形EBOC是平行四邊形,EBO于點D,連接CD并延長交AB的延長線于點F

1)求證:CFO的切線;

2)若∠F30°,EB8,求圖中陰影部分的面積.(結(jié)果保留根號和π

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,反比例函數(shù)k是常數(shù),且)的圖象經(jīng)過點

1)若b=4,求y關(guān)于x的函數(shù)表達式;

2)點也在反比例函數(shù)y的圖象上:

時,求b的取值范圍;

B在第二象限,求證:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】近年來,體育分數(shù)在中招考試中占分比重越來越大,不少家長、考生也越來越重視;某中學計劃購買一批足球、跳繩供學生們考前日常練習使用,負責此次采購的老師從商場了解到:購買7個足球和4條跳繩共需510元;購買3個足球比購買5條跳繩少50元.

1)求足球和跳繩的單價;

2)按學校規(guī)劃,準備購買足球和跳繩共200件,且足球的數(shù)量不少于跳繩的數(shù)量的 ,請設計出最省錢的購買方案,并說明理由.

查看答案和解析>>

同步練習冊答案