【題目】如圖①,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分別是∠BAC、∠BCA的平分線,AD、CE相交于點F.
(1)請你判斷并寫出FE與FD之間的數(shù)量關系(不需證明);
(2)如圖②,如果∠ACB不是直角,其他條件不變,那么在(1)中所得的結論是否仍然成立?若成立,請證明;若不成立,請說明理由.
【答案】(1)FE=FD (2)答案見解析
【解析】
(1)先在AC上截取AG=AE,連結FG,利用SAS判定△AEF≌△AGF,得出∠AFE=∠AFG,F(xiàn)E=FG,再利用ASA判定△CFG≌△CFD,得到FG=FD,進而得出FE=FD;
(2)先過點F分別作FG⊥AB于點G,F(xiàn)H⊥BC于點H,則∠FGE=∠FHD=90°,根據(jù)已知條件得到∠GEF=∠HDF,進而判定△EGF≌△DHF(AAS),即可得出FE=FD.也可以過點F作FG⊥AB于G,作FH⊥BC于H,作FK⊥AC于K,再判定△EFG≌△DFH(ASA),進而得出FE=FD.
(1)FE與FD之間的數(shù)量關系為:FE=FD.
理由:如圖,在AC上截取AG=AE,連結FG,
∵AD是∠BAC的平分線,
∴∠1=∠2,
在△AEF與△AGF中
,
∴△AEF≌△AGF(SAS),
∴∠AFE=∠AFG,F(xiàn)E=FG,
∵∠B=60°,AD,CE分別是∠BAC,∠BCA的平分線,
∴2∠2+2∠3+∠B=180°,
∴∠2+∠3=60°,
又∵∠AFE為△AFC的外角,
∴∠AFE=∠CFD=∠AFG=∠2+∠3=60°,
∴∠CFG=180°-60°-60°=60°,
∴∠GFC=∠DFC,
在△CFG與△CFD中,
,
∴△CFG≌△CFD(ASA),
∴FG=FD,
∴FE=FD;
(2)結論FE=FD仍然成立.
如圖,過點F分別作FG⊥AB于點G,F(xiàn)H⊥BC于點H,則∠FGE=∠FHD=90°,
∵∠B=60°,且AD,CE分別是∠BAC,∠BCA的平分線,
∴∠2+∠3=60°,F(xiàn)是△ABC的內心,
∴∠GEF=∠BAC+∠3=∠1+∠2+∠3=60°+∠1,
∵F是△ABC的內心,即F在∠ABC的角平分線上,
∴FG=FH,
又∵∠HDF=∠B+∠1=60°+∠1,
∴∠GEF=∠HDF,
在△EGF與△DHF中,
,
∴△EGF≌△DHF(AAS),
∴FE=FD.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形中,,點在邊上,且.將沿對折至,延長交邊于點.連結、.下列結論:①;②;③是正三角形;④的面積為90.其中正確的是______(填所有正確答案的序號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,AB是⊙O的直徑,BC是弦,∠B=30°,延長BA到D,使∠BDC=30°.
(1)求證:DC是⊙O的切線;
(2)若AB=2,求DC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某超市為了答謝顧客,凡在本超市購物的顧客,均可憑購物小票參與抽獎活動,獎品是三種瓶裝飲料,它們分別是:綠茶(500ml)、紅茶(500ml)和可樂(600ml),抽獎規(guī)則如下:①如圖,是一個材質均勻可自由轉動的轉盤,轉盤被等分成五個扇形區(qū)域,每個區(qū)域上分別寫有“可”、“綠”、“樂”、“茶”、“紅”字樣;②參與一次抽獎活動的顧客可進行兩次“有效隨機轉動”(當轉動轉盤,轉盤停止后,可獲得指針所指區(qū)域的字樣,我們稱這次轉動為一次“有效隨機轉動”);③假設顧客轉動轉盤,轉盤停止后,指針指向兩區(qū)域的邊界,顧客可以再轉動轉盤,直到轉動為一次“有效隨機轉動”;④當顧客完成一次抽獎活動后,記下兩次指針所指區(qū)域的兩個字,只要這兩個字和獎品名稱的兩個字相同(與字的順序無關),便可獲得相應獎品一瓶;不相同時,不能獲得任何獎品.
根據(jù)以上規(guī)則,回答下列問題:
(1)求一次“有效隨機轉動”可獲得“樂”字的概率;
(2)有一名顧客憑本超市的購物小票,參與了一次抽獎活動,請你用列表或樹狀圖等方法,求該顧客經過兩次“有效隨機轉動”后,獲得一瓶可樂的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將連續(xù)的偶數(shù)2,4,6,8,…,如圖所示排列:
(1)求圖中十字框內5個數(shù)的和與中間的數(shù)16的倍數(shù)關系.
(2)若將十字框上下左右移動,可框住另外的五個數(shù),請說明這五個數(shù)的和與十字框最中間的數(shù)之間存在的關系.
(3)若將十字框上下左右移動,框住的五個數(shù)的和能等于2019嗎?若能,請寫出這五個數(shù);若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】列方程解應用題
學校給七年級學生組織知識競賽,共設20道題,各題的分值相同,每題必答.下表記錄了5名學生的得分情況
參賽者 | 答對題數(shù) | 答錯題數(shù) | 得分 |
小明 | 10 | 10 | 40 |
小紅 | 19 | 1 | 94 |
小剛 | 20 | 0 | 100 |
小強 | 18 | 2 | 88 |
小麗 | 14 | 6 | 64 |
(1)參賽者小芳得76分,她答對了幾道題?
(2)參賽者小花說她得了83分,你認為可能嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩名同學參加1 000米比賽,由于參賽選手較多,將選手隨機分A、B、C三組進行比賽.
(1)甲同學恰好在A組的概率是________;
(2)求甲、乙兩人至少有一人在B組的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:AB、CD 是圓O 的兩條直徑,且∠AOD =α(0° < α < 90°),點P是扇形AOD內任意一點.點P將AB、CD所在直線依次輪流作為對稱軸翻折,將點P關于AB對稱的點記為點P1 ,點P1關CD 對稱的點記為點P2,點 P2 關于AB 對稱的點記為點P3,….
(1)根據(jù)所給圖中點P 的位置,分別畫出點 P 1、P 1;(不寫作圖步驟,但要保留作圖痕跡)
(2)分別聯(lián)結OP、OP1、OP2,那么線段OP、OP1、OP2 之間的數(shù)量關系是:OP OP1 OP2(填空,不要求寫出過程);
(3)由(1)、(2)可知,點 P 繞點O旋轉可以到達點P2的位置,如果 α=60°,OP= a,求線段 OP順時針旋轉到OP2 過程中掃過的面積;
(4)在 α 取某些特定值的時候,如果按照這樣的方式翻折,總能得到一點Pn與點P 重合, 求當n =12,點 P12 與點P 第一次重合時 α 的值.(直接寫出結果,不要求寫出過程)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com