【題目】如圖,在ABCD中,∠ACB=45°,AE⊥BC于點(diǎn)E,過點(diǎn)C作CF⊥AB于點(diǎn)F,交AE于點(diǎn)M.點(diǎn)N在邊BC上,且AM=CN,連結(jié)DN.
(1)若AB=,AC=4,求BC的長;
(2)求證:AD+AM=DN.
【答案】(1)3;(2)見解析
【解析】
(1)證出△ACE是等腰直角三角形,由勾股定理得:AE=CE=2,BE==,即可得出結(jié)果;
(2)延長AD至G,使DG=AM,證出四邊形CGDN是平行四邊形,得出CG=DN,證明△ABE≌△CME,得出AB=CM,∠B=∠CME,再證明△ACM≌△GCD,得出∠G=∠MAC=45°,證出△ACG是等腰直角三角形,得出AG=CG,即可得出結(jié)論.
(1)解:∵∠ACB=45°,AE⊥BC,
∴∠AEC=∠AEB=90°,△ACE是等腰直角三角形,
∴∠EAC=45°,AE=CE===2,
由勾股定理得:BE===,
∴BC=BE+CE=3;
(2)證明:延長AD至G,使DG=AM,連接CG,如圖所示:
∵AM=CN,
∴DG=CN,
∵四邊形ABCD是平行四邊形,
∴AB=CD,AD//BC,∠B=∠ADC,
∴DG∥CN,
∴四邊形CGDN是平行四邊形,
∴CG=DN,
∵CF⊥AB,
∴∠CFB=90°=∠AEB=∠CEA,
∴∠BAE=∠MCE,
在△ABE和△CME中,
,
∴△ABE≌△CME(AAS),
∴AB=CM,∠B=∠CME,
∴CM=CD,∠CME=∠ADC,
∴∠AMC=∠GDC,
在△ACM和△GCD中,
,
∴△ACM≌△GCD(SAS),
∴∠G=∠MAC=45°,
∵AD//BC,
∴∠DAC=∠ACB=45°,
∴△ACG是等腰直角三角形,
∴AG=CG,
∵AG=AD+DG=AD+AM,CG=DN,
∴AD+AM=DN.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,邊長為1,∠A=60,順次連接菱形ABCD各邊中點(diǎn),可得四邊形A1B1C1D1;順次連結(jié)四邊形A1B1C1D1各邊中點(diǎn),可得四邊形A2B2C2D2;順次連結(jié)四邊形A2B2C2D2各邊中點(diǎn),可得四邊形A3B3C3D3;按此規(guī)律繼續(xù)下去,…,則四邊形A2019B2019C2019D2019的面積是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知是的反比例函數(shù),下表給出了與的一些值.
… | -4 | -2 | -1 | 1 | 3 | 4 | … | |||
… | -2 | 6 | 3 | … |
(1)求出這個(gè)反比例函數(shù)的表達(dá)式;
(2)根據(jù)函數(shù)表達(dá)式完成上表;
(3)根據(jù)上表,在下圖的平面直角坐標(biāo)系中作出這個(gè)反比例函數(shù)的圖象.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與軸交于點(diǎn),與軸交于,兩點(diǎn)(點(diǎn)在軸正半軸上),為等腰直角三角形,且面積為,現(xiàn)將拋物線沿方向平移,平移后的拋物線過點(diǎn)時(shí),與軸的另一點(diǎn)為,其頂點(diǎn)為,對(duì)稱軸與軸的交點(diǎn)為.
求、的值.
連接,試判斷是否為等腰三角形,并說明理由.
現(xiàn)將一足夠大的三角板的直角頂點(diǎn)放在射線或射線上,一直角邊始終過點(diǎn),另一直角邊與軸相交于點(diǎn),是否存在這樣的點(diǎn),使以點(diǎn)、、為頂點(diǎn)的三角形與全等?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為積極響應(yīng)黨和國家精準(zhǔn)扶貧戰(zhàn)略計(jì)劃,某公司在農(nóng)村租用了 720畝閑置土地種植了喬 木型、小喬木型和灌木型三種茶樹. 為達(dá)到最佳種植收益,要求種植喬木型茶樹的面積是小喬木型茶樹面積的2倍,灌木型茶樹的面積不得超過喬木型茶樹面積的倍,但種植喬木型茶樹的面積不得超過270畝. 到茶葉采摘季節(jié)時(shí),該公司聘請(qǐng)當(dāng)?shù)剞r(nóng)民進(jìn)行采摘,每人每天可以采摘0.4畝喬木型茶葉,或者采摘0.5畝小喬木型茶葉,或者采摘0.6畝灌木型茶葉. 若該公司聘請(qǐng)一批農(nóng)民恰好20天能采摘完所有茶葉,則種植喬木型茶樹的面積是________畝.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為數(shù)學(xué)實(shí)驗(yàn)“先行示范!,一數(shù)學(xué)活動(dòng)小組帶上高度為1.5m的測角儀BC,對(duì)建筑物AO進(jìn)行測量高度的綜合實(shí)踐活動(dòng),如圖,在BC處測得直立于地面的AO頂點(diǎn)A的仰角為30°,然后前進(jìn)40m至DE處,測得頂點(diǎn)A的仰角為75°.
(1)求∠CAE的度數(shù);
(2)求AE的長(結(jié)果保留根號(hào));
(3)求建筑物AO的高度(精確到個(gè)位,參考數(shù)據(jù):,).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,對(duì)角線AC,BD相交于點(diǎn)O,E是CD的中點(diǎn),連接OE.過點(diǎn)C作CF∥BD交線段OE的延長線于點(diǎn)F,連接DF.
求證:(1)△ODE≌△FCE;
(2)四邊形ODFC是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)課外興趣小組的同學(xué)們要測量被池塘相隔的兩棵樹A,B的距離,他們?cè)O(shè)計(jì)了如圖的測量方案:從樹A沿著垂直于AB的方向走到E,再從E沿著垂直于AE的方向走到F,C為AE上一點(diǎn),其中4位同學(xué)分別測得四組數(shù)據(jù):①AC,∠ACB;②EF,DE,AD;③CD,∠ACB,∠ADB;④∠F,∠ADB,FB.其中能根據(jù)所測數(shù)據(jù)求得A,B兩樹距離的有( )
A.1組B.2組C.3組D.4組
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,,動(dòng)點(diǎn)從點(diǎn)出發(fā),在邊上以每秒2的速度向點(diǎn)勻速運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)從點(diǎn)出發(fā),在邊上以每秒的速度向點(diǎn)勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為(),連接.
(1)若,求的值;
(2)若與相似,求的值;
(3)當(dāng)為何值時(shí),四邊形的面積最?并求出最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com