【題目】423日是世界讀書(shū)日,某校為了營(yíng)造讀書(shū)好、好讀書(shū)、讀好書(shū)的書(shū)香校園,決定采購(gòu)《簡(jiǎn)·愛(ài)》、《小詞大雅》兩種圖書(shū)供學(xué)生閱讀,通過(guò)了解,購(gòu)買(mǎi)2本《簡(jiǎn)·愛(ài)》和3本《小詞大雅》共需168元,購(gòu)買(mǎi)3本《簡(jiǎn)·愛(ài)》和2本《小詞大雅》共需172元.

1)求一本《簡(jiǎn)·愛(ài)》和《小詞大雅》的價(jià)格分別是多少元;

2)若該校計(jì)劃購(gòu)買(mǎi)兩種圖書(shū)共300本,其中《簡(jiǎn)·愛(ài)》的數(shù)量不多于《小詞大雅》數(shù)量,且不少于100件.購(gòu)買(mǎi)《簡(jiǎn)·愛(ài)》m本,求總費(fèi)用W元與m之間的函數(shù)關(guān)系式,并寫(xiě)出m的取值范圍;

3)在(2)的條件下,學(xué)校在團(tuán)購(gòu)書(shū)籍時(shí),商家店鋪中《簡(jiǎn)·愛(ài)》正進(jìn)行書(shū)籍促銷(xiāo)活動(dòng),每本書(shū)箱降價(jià)a元(0< a 8),求學(xué)校購(gòu)書(shū)的的最低總費(fèi)用W1的值.

【答案】1)一本《簡(jiǎn)·愛(ài)》的價(jià)格是36元,一本《小詞大雅》的價(jià)格是32元;(2)總費(fèi)用W元與m之間的函數(shù)關(guān)系式為:W=4m+9600100m150);(3)當(dāng)4a8時(shí),W1=-150a+10200;當(dāng)a=4時(shí),W1=9600;當(dāng)0a4時(shí),W1=-100a+10000

【解析】

1)根據(jù)題目中的等量關(guān)系列方程組求解即可;

2)根據(jù)總費(fèi)用=數(shù)量×單價(jià)即可得出解析式,根據(jù)《簡(jiǎn)·愛(ài)》的數(shù)量不多于《小詞大雅》數(shù)量,且不少于100件即可算出取值范圍;

3)根據(jù)(2)中的解析式求出降價(jià)后的解析式W=4-am+9600100m150),再分

①當(dāng)-44-a0,即4a8時(shí),②當(dāng)4-a=0,即a=4時(shí),③當(dāng)04-a4,即0a4時(shí),三種情況討論即可.

解:(1)設(shè)一本《簡(jiǎn)·愛(ài)》的價(jià)格是x元,一本《小詞大雅》的價(jià)格是y元,

由題意得

解得,

答:一本《簡(jiǎn)·愛(ài)》的價(jià)格是36元,一本《小詞大雅》的價(jià)格是32元;

2)學(xué)校購(gòu)買(mǎi)《簡(jiǎn)·愛(ài)》m本,則購(gòu)買(mǎi)《小詞大雅》(300-m)本,

W=36m+32300-m=4m+9600

故總費(fèi)用W元與m之間的函數(shù)關(guān)系式為:W=4m+9600,

∵《簡(jiǎn)·愛(ài)》的數(shù)量不多于《小詞大雅》數(shù)量,且不少于100件,

解得,

m的取值范圍是100m150,

綜上:總費(fèi)用W元與m之間的函數(shù)關(guān)系式為:W=4m+9600100m150);

3W=36-am+32300-m=4-am+9600100m150),

0a8,

-44-a4,

①當(dāng)-44-a0,即4a8時(shí),Wm的增大而減小,當(dāng)m=150時(shí),Wmin=-150a+10200,

②當(dāng)4-a=0,即a=4時(shí),Wmin=9600,

③當(dāng)04-a4,即0a4時(shí),Wm的增大而增大,當(dāng)m=100時(shí),Wmin=-100a+10000,

綜上:當(dāng)4a8時(shí),W1=-150a+10200,

當(dāng)a=4時(shí),W1=9600,

當(dāng)0a4時(shí),W1=-100a+10000

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在 ABCD中,CD=2AD,BEAD于點(diǎn)E,F(xiàn)DC的中點(diǎn),連結(jié)EF、BF,下列結(jié)論:①∠ABC=2ABF;EF=BF;S四邊形DEBC=2SEFB;④∠CFE=3DEF,其中正確結(jié)論的個(gè)數(shù)共有( ).

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知三角形ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別是A(0,3),B(0,1),C(2,1).若將三角形ABC向左平移3個(gè)單位長(zhǎng)度,再向下平移1個(gè)單位長(zhǎng)度得到三角形A′B′C′.

(1)寫(xiě)出三角形A′B′C′各頂點(diǎn)的坐標(biāo);
(2)畫(huà)出三角形ABC和三角形A′B′C′;
(3)求出三角形A′B′C′的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】規(guī)定sin(-x)=-sinx,cos(-x)=cosx,sinx+y)=sinx·cosycosx·siny.據(jù)此判斷下列等式成立的是_________(填序號(hào))

cos(-60°)=—cos60°=

sin75°sin30°+45°=sin30°·cos45°+cos30°·sin45°=

③sin2xsinx+x)=sinx·cosx+cosx·sinx2sinx·cosx;

④sinxy)=sinx·cosycosx·siny

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在數(shù)學(xué)課上,老師提出利用尺規(guī)作圖完成下面問(wèn)題

已知ACB是△ABC的一個(gè)內(nèi)角

求作APB=∠ACB

小路的作法如下

老師說(shuō)“小路的作法正確.”

請(qǐng)回答:(1點(diǎn)O為△ABC外接圓圓心(即OA=OB=OC的依據(jù)是_____;

2APB=∠ACB的依據(jù)是_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們不妨約定:對(duì)角線(xiàn)互相垂直的凸四邊形叫做十字形

1)①在平行四邊形,矩形,菱形、正方形中,一定是十字形的有

②若凸四邊形ABCD是十字形,ACa,BDb,則該四邊形的面積為 ;

2)如圖1,以等腰RtABC的底邊AC為邊作等邊三角形△ACD,連接BD,交AC于點(diǎn)O, 當(dāng) ≤S 四邊形 時(shí),求BD的取值范圍;

3)如圖2,以十字形ABCD的對(duì)角線(xiàn)ACBD為坐標(biāo)軸,建立如圖所示的平面直角坐標(biāo)系xOy,若計(jì) 十字形ABCD的面積為S,記△AOB,△COD,△AOD,△BOC的面積分別為:S1,S2,S3,S4,且同時(shí)滿(mǎn)足列四個(gè)條件:

;② ;③十字形ABCD的周長(zhǎng)為32:④∠ABC60°; EOA的中點(diǎn),F為線(xiàn)段BO上一動(dòng)點(diǎn),連接EF,動(dòng)點(diǎn)P從點(diǎn)E出發(fā),以1cm/s 的速度沿線(xiàn)段EF勻速運(yùn)動(dòng)到點(diǎn)F,再以2cms 的速度沿線(xiàn)段FB勻速運(yùn)動(dòng)到點(diǎn)B,到達(dá)點(diǎn)B 后停止運(yùn)動(dòng),當(dāng)點(diǎn)P沿上述路線(xiàn)運(yùn)動(dòng) 到點(diǎn)B所需要的時(shí)間最短時(shí),求點(diǎn)P走完全程所需的時(shí)間及直線(xiàn)EF的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,六邊形 ABCDEF 中,∠A+B+C=D+E+F,猜想可 得六邊形 ABCDEF 中必有兩條邊是平行的.

(1)根據(jù)圖形寫(xiě)出你的猜想:

(2)請(qǐng)證明你在(1)中寫(xiě)出的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,點(diǎn)E,F(xiàn)在對(duì)角線(xiàn)AC上,且AE=CF.求證:

(1)DE=BF;

(2)四邊形DEBF是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】彩虹服裝店用元購(gòu)進(jìn)件襯衣,很快全部售完.服裝店老板以每件元的價(jià)格為標(biāo)準(zhǔn),將超出的記為正數(shù),不足的記為負(fù)數(shù),記錄如下:,,,,,(單位:元).他賣(mài)完這件襯衣后是盈利還是虧損?盈利(或虧損)了多少錢(qián)?

查看答案和解析>>

同步練習(xí)冊(cè)答案