【題目】歷史上的數(shù)學(xué)巨人歐拉最先把關(guān)于x的多項(xiàng)式用記號(hào)f(x)來表示.例如f(x)=x2+3x-5,x=某數(shù)時(shí)多項(xiàng)式的值用f(某數(shù))來表示.例如x=-1時(shí)多項(xiàng)式x2+3x-5的值記為f(-1)=(-1)2+3×(-1)-5=-7.

(1)已知g(x)=-2x2-3x+1,分別求出g(-1)g(-2);

(2)已知h(x)=ax3+2x2-ax-6,當(dāng)h()=a,a的值;

(3)已知f(x)=-2(a,b為常數(shù)),當(dāng)k無論為何值,總有f(1)=0,a,b的值.

【答案】(1)g(-1)=2 g(-2)=-1 (2)a=-4 (3)a=,b=-4.

【解析】1)將x=-1x=-2分別代入可得出答案;

(2)將x=代入可得關(guān)于a的一元一次方程,解出即可;

(3)f(1)=0,x=1代入可得關(guān)于a、b、k的方程,根據(jù)無論k為何值時(shí),都成立就可求出a、b的值.

1)由題意得:g(-1)=-2×(-1)2-3×(-1)+1=2;

g(-2)=-2×(-2)2-3×(-2)+1=-1;

(2)由題意得:,

解得:a=-4;

(3)k無論為何值,總有f(1)=0,

=0,

則當(dāng)k=1、k=0時(shí),可得方程組,

解得:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD和四邊形ACED都是平行四邊形,點(diǎn)R在DE上,且DR:RE=5:4,BR分別與AC,CD相交于點(diǎn)P,Q,則BP:PQ:QR=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,將△ABO繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到△AB1C1的位置,點(diǎn)B、O分別落在點(diǎn)B1、C1處,點(diǎn)B1在x軸上,再將△AB1C1繞點(diǎn)B1順時(shí)針旋轉(zhuǎn)到△A1B1C2的位置,點(diǎn)C2在x軸上,將△A1B1C2繞點(diǎn)C2順時(shí)針旋轉(zhuǎn)到△A2B2C2的位置,點(diǎn)A2在x軸上,依次進(jìn)行下去….若點(diǎn)A( ,0),B(0,2),則點(diǎn)B2016的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的一元二次方程x2+(2k+1)x+k2+1=0有兩個(gè)不等實(shí)根x1、x2
(1)求實(shí)數(shù)k的取值范圍.
(2)若方程兩實(shí)根x1、x2滿足x1+x2=﹣x1x2 , 求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A、B、C、D把一個(gè)400米的環(huán)形跑道分成相等的4段,即兩條直道和兩條彎道的長(zhǎng)度相同.甲平均每秒跑4乙平均每秒跑6,若甲、乙兩人分別從A、C兩處同時(shí)相向出發(fā)(如圖),當(dāng)他們第4次相遇時(shí),其相遇點(diǎn)在____________(”AB””BC””CD””DA”).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在﹣1,0,1,2,3這五個(gè)數(shù)中任取兩數(shù)m,n,則二次函數(shù)y=﹣(x+m)2﹣n的頂點(diǎn)在x軸上的概率為(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC,DBC邊上一點(diǎn),∠B=30°DAB=45°.(1)求∠DAC的度數(shù);(2)請(qǐng)說明:AB=CD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】山西特產(chǎn)專賣店銷售核桃,其進(jìn)價(jià)為每千克40元,按每千克60元出售,平均每天可售出100千克,后來經(jīng)過市場(chǎng)調(diào)查發(fā)現(xiàn),單價(jià)每降低2元,則平均每天的銷售可增加20千克,若該專賣店銷售這種核桃要想平均每天獲利2240元,請(qǐng)回答:
(1)每千克核桃應(yīng)降價(jià)多少元?
(2)在平均每天獲利不變的情況下,為盡可能讓利于顧客,贏得市場(chǎng),該店應(yīng)按原售價(jià)的幾折出售?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,矩形ABCD的對(duì)角線AC,BD交于點(diǎn)O,過點(diǎn)DDPOC,且DPOC,連接CP.

(1)判斷四邊形CODP的形狀并說明理由;

(2)如圖②,如果題目中的矩形變?yōu)榱庑,判斷四邊?/span>CODP的形狀并說明理由;

(3)如圖③,如果題目中的矩形變?yōu)檎叫,判斷四邊?/span>CODP的形狀并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案