【題目】如圖,拋物線y=﹣x2+bx+c經(jīng)過A(﹣1,0),B(3,0)兩點,交y軸于點C,點D為拋物線的頂點,連接BD,點HBD的中點.請解答下列問題:

(1)求拋物線的解析式及頂點D的坐標;

(2)在y軸上找一點P,使PD+PH的值最小,則PD+PH的最小值為   

(注:拋物線y=ax2+bx+c(a≠0)的對稱軸是直線x=﹣,頂點坐標為(﹣,

【答案】(1)函數(shù)的解析式為:y=﹣x2+2x+3,頂點D(1,4);(2).

【解析】

先利用待定系數(shù)法求出函數(shù)的解析式,再連接H′Dy軸交于點P,則PD+PH最小.

(1)∵拋物線y=﹣x2+bx+c過點A(﹣1,0),B(3,0)

解得

∴所求函數(shù)的解析式為:y=﹣x2+2x+3

y=﹣x2+2x+3=﹣(x﹣1)2+4

∴頂點D(1,4)

(2)B(3,0),D(1,4)

∴中點H的坐標為(2,2)其關于y軸的對稱點H′坐標為(﹣2,2)

連接H′Dy軸交于點P,則PD+PH最小

且最小值為: =

∴答案:.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,RtABO中,∠AOB90°,點A在第一象限,點B在第二象限,且AOBO12,若經(jīng)過點A的反比例函數(shù)解析式為y,則經(jīng)過點Bx,y)的反比例函數(shù)解析式為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知矩形ABCD,AB=m,BC=6,點P為線段AD上任一點

(1)若∠BPC=60°,請在圖中用尺規(guī)作圖畫出符合要求的點P;(保留作圖痕跡,不要求寫作法)

(2)若符合(1)中要求的點P必定存在,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某批乒乓球的質(zhì)量檢驗結(jié)果如下:

抽取的乒乓球數(shù)n

200

500

1000

1500

2000

優(yōu)等品頻數(shù)m

188

471

946

1426

1898

優(yōu)等品頻率

0.940

0.942

0.946

0.951

0.949

(1)畫出這批乒乓球優(yōu)等品頻率的折線統(tǒng)計圖;

(2)這批乒乓球優(yōu)等品的概率的估計值是多少?

(3)從這批乒乓球中選擇5個黃球、13個黑球、22個紅球,它們除顏色外都相同,將它們放入一個不透明的袋中.

求從袋中摸出一個球是黃球的概率;

現(xiàn)從袋中取出若干個黑球,并放入相同數(shù)量的黃球,攪拌均勻后使從袋中摸出一個是黃球的概率不小于, 問至少取出了多少個黑球?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中秋節(jié)前夕,某公司的李會計受公司委派去超市購買若干盒美心月餅,超市給出了該種月餅不同購買數(shù)量的價格優(yōu)惠,如圖,折線ABCD表示購買這種月餅每盒的價格y(元)與盒數(shù)x(盒)之間的函數(shù)關系.

(1)當購買這種月餅盒數(shù)不超過10盒時,一盒月餅的價格為   元;

(2)求出當10<x<25時,yx之間的函數(shù)關系式;

(3)當時李會計支付了3600元購買這種月餅,那么李會計買了多少盒這種月餅?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:二次函數(shù)y=﹣2x2+4x+m+1,與x軸的公共點為A,B.

(1)如果AB重合,求m的值;

(2)橫、縱坐標都是整數(shù)的點叫做整點:

m=﹣1時,求線段AB上整點的個數(shù);

若設拋物線在點A,B之間的部分與線段AB所圍成的區(qū)域內(nèi)(包括邊界)整點的個數(shù)為n,當1<n≤8時,結(jié)合函數(shù)的圖象,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩車從A城出發(fā)沿一條筆直公路勻速行駛至B城.在整個行駛過程中,甲、乙兩車離開A城的距離(千米)與甲車行駛的時間t(小時)之間的函數(shù)關系如圖所示.

(1)A,B兩城相距 千米,乙車比甲車早到 小時;

(2)甲車出發(fā)多長時間與乙車相遇?

(3)若兩車相距不超過20千米時可以通過無線電相互通話,則兩車都在行駛過程中可以通過無線電通話的時間有多長?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:

數(shù)學活動課上,李老師給出如下定義:如果一個三角形有一邊上的中線等于這條邊的一半,那么稱三角形為智慧三角形.

理解:

如圖,已知上兩點,請在圓上找出滿足條件的點,使智慧三角形(畫出點的位置,保留作圖痕跡);

如圖,在正方形中,的中點,上一點,且,試判斷是否為智慧三角形,并說明理由;

運用:

如圖,在平面直角坐標系中,的半徑為,點是直線上的一點,若在上存在一點,使得智慧三角形,當其面積取得最小值時,直接寫出此時點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,點B、F、C、E在同一直線上,AC、DF相交于點G,ABBE,垂足為B,DEBE,垂足為E,且AC=DF,BF=EC.求證:

(1)ABC≌△DEF

(2)FG=CG.

查看答案和解析>>

同步練習冊答案