13.解方程組:
(1)$\left\{\begin{array}{l}{3(x-1)=y+5}\\{5(y-1)=3(x+5)}\end{array}\right.$
(2)$\left\{\begin{array}{l}{\frac{x}{2}-\frac{x+1}{3}=1}\\{3x+2y=10}\end{array}\right.$.

分析 (1)去括號(hào),先將兩個(gè)方程化簡(jiǎn),再利用加減法解方程組;
(2)去分母化簡(jiǎn),再利用加減法解方程組.

解答 解:(1)化簡(jiǎn)得:$\left\{\begin{array}{l}{3x-y=8①}\\{3x-5y=-20②}\end{array}\right.$,
①-②得:4y=28,
y=7,
把y=7代入①得:3x-7=8,
x=5,
∴方程組的解為$\left\{\begin{array}{l}{x=5}\\{y=7}\end{array}\right.$;
(2)化簡(jiǎn)得:$\left\{\begin{array}{l}{3x-2y=8①}\\{3x+2y=10②}\end{array}\right.$,
①+②得:6x=18,
x=3,
②-①得:4y=2,
y=$\frac{1}{2}$,
∴方程組的解為$\left\{\begin{array}{l}{x=3}\\{y=\frac{1}{2}}\end{array}\right.$.

點(diǎn)評(píng) 本題考查了解二元一次方程組,解決本題的關(guān)鍵是利用加減消元法解二元一次方程組.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

3.在同一平面直角坐標(biāo)系內(nèi)畫一次函數(shù)y1=-x+4和y2=2x-5的圖象,根據(jù)圖象求:
(1)方程-x+4=2x-5的解;
(2)當(dāng)x取何值時(shí),y1>y2?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

4.如果一個(gè)四位數(shù)的千位數(shù)字與十位數(shù)學(xué)相同,百位數(shù)字與個(gè)位數(shù)字相同,則稱這個(gè)四位數(shù)為“循環(huán)四位數(shù)”,如1212,5252,6767,…等都是“循環(huán)四位數(shù)”,如果將一個(gè)“循環(huán)四位數(shù)”的百位數(shù)字與千位數(shù)字,個(gè)位數(shù)字與十位數(shù)字都交換位置,得到一個(gè)新四位數(shù),我們把這個(gè)新四位數(shù)叫做“原循環(huán)四位數(shù)的對(duì)應(yīng)數(shù)”,如果原循環(huán)四位數(shù)的百位數(shù)字是0,則忽略交換位置后首位的“0”,即它的對(duì)應(yīng)數(shù)就是首位“0”忽略后的三位數(shù),如1212的對(duì)應(yīng)數(shù)為2121,5252的對(duì)應(yīng)數(shù)為2525,1010的對(duì)應(yīng)數(shù)為101.
(1)任意寫一個(gè)“循環(huán)四位數(shù)”及它的“對(duì)應(yīng)數(shù)”;猜想任意一個(gè)“循環(huán)四位數(shù)”與它的“對(duì)應(yīng)數(shù)”的差是否都能被101整除?并說(shuō)明理由;
(2)一個(gè)“循環(huán)四位數(shù)”的千位數(shù)字為x(1≤x≤9),百位數(shù)字為y(0≤y≤9,且y<x),若這個(gè)循環(huán)四位數(shù)與它的對(duì)應(yīng)數(shù)的差能被404整除,求y與x應(yīng)滿足的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知:如圖,在平面直角坐標(biāo)系xOy中,反比例函數(shù)y1=$\frac{m}{x}$的圖象與一次函數(shù)y2=kx+b的圖象交于點(diǎn)A(-4,-1)和點(diǎn)B(1,n).
(1)求這兩個(gè)函數(shù)的表達(dá)式;
(2)觀察圖象,當(dāng)y1>y2時(shí),直接寫出自變量x的取值范圍;
(3)如果點(diǎn)C與點(diǎn)A關(guān)于y軸對(duì)稱,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

8.解不等式組:$\left\{\begin{array}{l}{x-2>0}\\{\frac{x-3}{2}≤x+1}\end{array}\right.$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

18.解方程
(1)4-3x=6-5x
(2)3x-4(x-1)=2(x+5)
(3)$\frac{x+1}{2}$-1=$\frac{2-3x}{3}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

5.如圖,直線y=ax-4(a≠0)與雙曲線y=$\frac{k}{x}$只有一個(gè)公共點(diǎn)A(1,-2).
(1)求k與a的值;
(2)若直線y=ax+b(a≠0)與雙曲線y=$\frac{k}{x}$有兩個(gè)公共點(diǎn),請(qǐng)直接寫出b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

2.解方程組:
(1)$\left\{\begin{array}{l}{x+y=5}\\{2x+y=8}\end{array}\right.$
(2)$\left\{\begin{array}{l}{2x-5y=7}\\{3x+2y=1}\end{array}\right.$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖,已知點(diǎn)A,C在反比例函數(shù)y=$\frac{a}{x}$(a>0)的圖象上,點(diǎn)B,D在反比例函數(shù)y=$\frac{x}$(b<0)的圖象上,AB∥CD∥x軸,AB,CD在x軸的兩側(cè),AB=3,CD=2,AB與CD的距離為5,則a-b的值是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案