某企業(yè)設計了一款工藝品,每件的成本是50元,為了合理定價,投放市場進行試銷.據市場調查,銷售單價是100元時,每天的銷售量是50件,而銷售單價每降低1元,每天就可多售出5件,但要求銷售單價不得低于成本.
(1)求出每天的銷售利潤y(元)與銷售單價x(元)之間的函數(shù)關系式;
(2)求出銷售單價為多少元時,每天的銷售利潤最大?最大利潤是多少?
(3)如果該企業(yè)要使每天的銷售利潤不低于4000元,且每天的總成本不超過7000元,那么銷售單價應控制在什么范圍內?(每天的總成本=每件的成本×每天的銷售量)
解:(1)y=(x﹣50)[50+5(100﹣x)]
=(x﹣50)(﹣5x+550)
=﹣5x2+800x﹣27500
∴y=﹣5x2+800x﹣27500(50≤x≤100);
(2)y=﹣5x2+800x﹣27500
=﹣5(x﹣80)2+4500
∵a=﹣5<0,
∴拋物線開口向下.
∵50≤x≤100,對稱軸是直線x=80,
∴當x=80時,y最大值=4500;
(3)當y=4000時,﹣5(x﹣80)2+4500=4000,
解得x1=70,x2=90.
∴當70≤x≤90時,每天的銷售利潤不低于4000元.
由每天的總成本不超過7000元,得50(﹣5x+550)≤7000,
解得x≥82.
∴82≤x≤90,
∵50≤x≤100,
∴銷售單價應該控制在82元至90元之間.
科目:初中數(shù)學 來源: 題型:
空氣質量狀況已引起全社會的廣泛關注,某市統(tǒng)計了2013年每月空氣質量達到良好以上的天數(shù),整理后制成如下折線統(tǒng)計圖和扇形統(tǒng)計圖.
根據以上信息解答下列問題:
(1)該市2013年每月空氣質量達到良好以上天數(shù)的中位數(shù)是 天,眾數(shù)是 天;
(2)求扇形統(tǒng)計圖中扇形A的圓心角的度數(shù);
(3)根據以上統(tǒng)計圖提供的信息,請你簡要分析該市的空氣質量狀況(字數(shù)不超過30字).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,在平面直角坐標系中,已知點A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),把一根長為2014個單位長度且沒有彈性的細線(線的粗細忽略不計)的一端固定在A處,并按A→B→C→D→A…的規(guī)律緊繞在四邊形ABCD的邊上,則細線的另一端所在位置的點的坐標是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,在平面直角坐標系中,已知矩形AOBC的頂點C的坐標是(2,4),動點P從點A出發(fā),沿線段AO向終點O運動,同時動點Q從點B出發(fā),沿線段BC向終點C運動.點P、Q的運動速度均為1個單位,運動時間為t秒.過點P作PE⊥AO交AB于點E.
(1)求直線AB的解析式;
(2)設△PEQ的面積為S,求S與t時間的函數(shù)關系,并指出自變量t的取值范圍;
(3)在動點P、Q運動的過程中,點H是矩形AOBC內(包括邊界)一點,且以B、Q、E、H為頂點的四邊形是菱形,直接寫出t值和與其對應的點H的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
對于平面直角坐標系中任意兩點P1(x1,y1)、P2(x2,y2),稱|x1﹣x2|+|y1﹣y2|為P1、P2兩點的直角距離,記作:d(P1,P2).若P0(x0,y0)是一定點,Q(x,y)是直線y=kx+b上的一動點,稱d(P0,Q)的最小值為P0到直線y=kx+b的直角距離.令P0(2,﹣3).O為坐標原點.則:
(1)d(O,P0)= 。
(2)若P(a,﹣3)到直線y=x+1的直角距離為6,則a= .
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com