【題目】某校為了了解了解節(jié)能減排、垃圾分類等知識的普及情況,從該校2000名學(xué)生中隨機抽取了部分學(xué)生進行調(diào)查調(diào)查,調(diào)查結(jié)果分為“非常了解“、“了解”、“了解較少”、“不了解”四類,并將調(diào)查結(jié)果繪制出以下兩幅不完整的統(tǒng)計圖,請根據(jù)統(tǒng)計圖回答下列問題:
(1)本次調(diào)查的學(xué)生共有 人,估計該校2000名學(xué)生中“不了解”的人數(shù)約有 人.
(2)“非常了解”的4人中有A1,A2兩名男生,B1,B2兩名女生,若從中隨機抽取兩人去參加環(huán)保知識競賽,請用畫樹狀圖和列表的方法,求恰好抽到2名男生的概率.
【答案】(1)50,600;(2)P(恰好抽到2名男生)=.
【解析】(1)由“非常了解”的人數(shù)及其所占百分比求得總?cè)藬?shù),繼而由各了解程度的人數(shù)之和等于總?cè)藬?shù)求得“不了解”的人數(shù),用總?cè)藬?shù)乘以樣本中“不了解”人數(shù)所占比例可得;
(2)分別用樹狀圖和列表兩種方法表示出所有等可能結(jié)果,從中找到恰好抽到2名男生的結(jié)果數(shù),利用概率公式計算可得.
(1)本次調(diào)查的學(xué)生總?cè)藬?shù)為4÷8%=50人,
則不了解的學(xué)生人數(shù)為50﹣(4+11+20)=15人,
∴估計該校2000名學(xué)生中“不了解”的人數(shù)約有2000×=600人,
故答案為:50、600;
(2)畫樹狀圖如下:
共有12種可能的結(jié)果,恰好抽到2名男生的結(jié)果有2個,
∴P(恰好抽到2名男生)=.
列表如下:
A1 | A2 | B1 | B2 | |
A1 | (A2,A1) | (B1,A1) | (B2,A1) | |
A2 | (A1,A2) | (B1,A2) | (B2,A2) | |
B1 | (A1,B1) | (A2,B1) | (B2,B1) | |
B2 | (A1,B2) | (A2,B2) | (B1,B2) |
由表可知共有12種可能的結(jié)果,恰好抽到2名男生的結(jié)果有2個,
∴P(恰好抽到2名男生)=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“滴滴”司機沈師傅從上午8:00~9:15在東西方向的江平大道上營運,共連續(xù)運載十批乘客.若規(guī)定向東為正,向西為負(fù),沈師傅營運十批乘客里程如下:(單位:千米)+8,-6,+3,-6,+8,+4,-8,-4,+3,+3.
(1)將最后一批乘客送到目的地時,沈師傅距離第一批乘客出發(fā)地的東面還是西面?距離多少千米?
(2) 若汽車每千米耗油0.4升,則8:00~9:15汽車共耗油多少升?
(3)若“滴滴”的收費標(biāo)準(zhǔn)為:起步價8元(不超過3千米),超過3千米,超過部分每千米2元.則沈師傅在上午8:00~9:15一共收入多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某品牌轎車的耗油情況,將油箱加滿后進行了耗油試驗,得到如下數(shù)據(jù):
轎車行駛的路程 s(km) | 0 | 10 | 20 | 30 | 40 | … |
油箱剩余油量 w(L) | 50 | 49.2 | 48.4 | 47.6 | 46.8 | … |
(1)該轎車油箱的容量為 L,行駛 120km 時,油箱剩余油量為 L;
(2)根據(jù)上表的數(shù)據(jù),寫出油箱剩余油量 w(L)與轎車行駛的路程 s(km)之間的表達式 ;
(3)某人將油箱加滿后,駕駛該轎車從 A 地前往 B 地,到達 B 地時郵箱剩余油量為 22L,求 A,B 兩地之間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有、、三個居民小區(qū)的位置成三角形,現(xiàn)決定在三個小區(qū)之間修建一個購物超市,使超市到三個小區(qū)的距離相等,則超市應(yīng)建在( )
A.在∠A、∠B兩內(nèi)角平分線的交點處
B.在AC、BC兩邊垂直平分線的交點處
C.在AC、BC兩邊高線的交點處
D.在AC、BC兩邊中線的交點處
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,對稱軸為直線x=1,則下列結(jié)論正確的有_____.
①abc>0
②方程ax2+bx+c=0的兩個根是x1=﹣1,x2=3
③2a+b=0
④當(dāng)x>0時,y隨x的增大而減小
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,DE⊥AB于E,DF⊥AC于F,AD平分∠BAC,BD=CD
(1)求證:BE=CF;
(2)已知AC=10,DE=4,BE=2,求△AEC的面積
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】長春市地鐵1號線,北起北環(huán)站,南至紅咀子站,共設(shè)15個地下車站,2017年6月30日開通運營,標(biāo)志著吉林省正式邁進“地鐵時代”,15個站點如圖所示.
某天,王紅從人民廣場站開始乘坐地鐵,在地鐵各站點做志愿者服務(wù),到A站下車時,本次志愿者服務(wù)活動結(jié)束,約定向紅咀子站方向為正,當(dāng)天的乘車記錄如下(單位:站):+5,﹣2,﹣6,+8,+3,﹣4,﹣9,+8
(1)請通過計算說明A站是哪一站?
(2)相鄰兩站之間的距離為1.3千米,求這次王紅志愿服務(wù)期間乘坐地鐵行進的路程是多少千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知圖甲是一個長為2a,寬為2b的長方形,沿圖甲中虛線用剪刀均勻分成四個小長方形,然后按圖乙的形狀拼成一個正方形.
(1)請將圖乙中陰影部分正方形的邊長用含a、b的代數(shù)式表示;
(2)請用兩種不同的方法求圖乙中陰影部分的面積S;
(3)觀察圖乙,并結(jié)合(2)中的結(jié)論,寫出下列三個整式:,,ab之間的等式;
(4)根據(jù)(3)中的等量關(guān)系,解決如下問題:當(dāng),時,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點F的坐標(biāo)為(0,10).點E的坐標(biāo)為(20,0),直線l1經(jīng)過點F和點E,直線l1與直線l2 、y=x相交于點P.
(1)求直線l1的表達式和點P的坐標(biāo);
(2)矩形ABCD的邊AB在y軸的正半軸上,點A與點F重合,點B在線段OF上,邊AD平行于x 軸,且AB=6,AD=9,將矩形ABCD沿射線FE的方向平移,邊AD始終與x 軸平行.已知矩形ABCD以每秒個單位的速度勻速移動(點A移動到點E時止移動),設(shè)移動時間為t秒(t>0).
①矩形ABCD在移動過程中,B、C、D三點中有且只有一個頂點落在直線l1或l2上,請直接寫出此時t的值;
②若矩形ABCD在移動的過程中,直線CD交直線l1于點N,交直線l2于點M.當(dāng)△PMN的面積等于18時,請直接寫出此時t的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com