精英家教網 > 初中數學 > 題目詳情
如圖,等邊三角形ABC中,D是AB邊上的動點,以CD為一邊,向上作等邊三角形EDC,連接AE.
求證:(1)△ACE≌△BCD;(2)AE∥BC.

【答案】分析:(1)根據△ABC與△EDC是等邊三角形,利用其三邊相等和三角相等的關系,求證∠BCD=∠ACE.然后即可證明結論
(2)根據ACE≌△BCD,可得∠ABC=∠CAE=60°,利用等量代換求證∠CAE=∠ACB即可.
解答:證明:(1)∵△ABC與△EDC是等邊三角形,
∴∠ACB=∠DCE=60°,AC=BC,DC=EC.
又∵∠BCD=∠ACB-∠ACD,∠ACE=∠DCE-∠ACD,
∴∠BCD=∠ACE.
∴△ACE≌△BCD.

(2)∵ACE≌△BCD,
∴∠ABC=∠CAE=60°,
又∵∠ACB=60°,
∴∠CAE=∠ACB,
∴AE∥BC.
點評:此題主要考查等邊三角形的性質和全等三角形的判定與性質等知識點的理解和掌握,難易程度適中,是一道很典型的題目.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網已知:如圖,等邊三角形AOB的頂點A在反比例函數y=
3
x
(x>0)的圖象上,點B在x軸上.
(1)求點B的坐標;
(2)求直線AB的函數表示式;
(3)在y軸上是否存在點P,使△OAP是等腰三角形?若存在,直接把符合條件的點P的坐標都寫出來;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,等邊三角形ABC中,D、E分別為AB、BC邊上的兩動點,且總使AD=BE,AE與CD交于點F,AG⊥CD于點G,則
FG
AF
=( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

已知:如圖,等邊三角形ABC的邊長為6,點D,E分別在邊AB,AC上,且AD=AE=2.若點F從點B開始以每秒1個單位長的速度沿射線BC方向運動,設點F運動的時間為t秒.當t>0時,直線FD與過點A且平行于BC的直線相交于點G,GE的延長線與BC的延長線相交于點H,AB與GH相交于點O.
(1)設△EGA的面積為S,寫出S與t的函數關系式;
(2)當t為何值時,AB⊥GH.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,等邊三角形ABC的邊長為a,若D、E、F、G分別為AB、AC、CD、BF的中點,則△BEG的面積是( 。

查看答案和解析>>

科目:初中數學 來源: 題型:013

已知:如圖,在等邊三角形AB,AD=BE=CF,D,E,F不是各邊的中點,AE,BF,CD分別交于P,M,N在每一組全等三角形中,有三個三角形全等,在圖中全等三角形的組數是

[    ]

A.5   B.4    C.3   D.2

 

查看答案和解析>>

同步練習冊答案