【題目】1解方程: 3yy﹣1=2﹣2y

2如圖,△ABC中,CD是邊AB上的高,且.求∠ACB的大小.

【答案】1,y2=1;(2) 90°

【解析】試題分析:

(1)根據(jù)本題特點,用“因式分解法”解此方程即可;

2ABC中,CD是邊AB上的高,可得∠ADC=CDB=90°,結合 可證得:ADC∽△CDB,從而可得∠BCD=A,結合∠A+ACD=90°可得∠BCD+ACD=ACB=90°.

試題解析

1)方程整理得:3y(y-1)-2(y-1)=0,

分解因式得:(3y-2(y-1)=0,

解得: ,y2=1.

(2)∴∠ADC=∠BDC=90°
∵AD:CD=CD:BD,
∴△ADC∽△CDB
∴∠ACD=∠B;
∵∠A+∠ACD=90°
∴∠A+∠B=90°,即∠ACB=90°

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某工廠計劃生產(chǎn)A、B兩種產(chǎn)品共10件,其生產(chǎn)成本和利潤如下表:

(1)若工廠計劃獲利14萬元,問A、B兩種產(chǎn)品應分別生產(chǎn)多少件?

(2)若工廠投入資金不多于44萬元,且獲利多于14萬元,問工廠有哪幾種生產(chǎn)方案?

(3)(2)條件下,哪種方案獲利最大?并求最大利潤.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在購買某場足球門票時,設購買門票數(shù)為x(張),費用為y(元).現(xiàn)有兩種購買方案:

方案一:若單位費助廣告費10000元,則該單位所購門票的價格為每張60元;(總費用=廣告贊助費+門票費)

方案二:購買門票方式如圖所示.

解答下列問題:

1)方案一中,yx的函數(shù)關系式為 ;

方案二中,當0x100時,yx的函數(shù)關系式為 ;

x100時,yx的函數(shù)關系式為 ;

2)如果購買本場足球賽門票超過100張,你將選擇哪一種方案,使總費用最省?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,矩形ABCD,AB4,BC

1)直接寫出:ABD______度;

2)將矩形ABCD沿BD剪開得到兩個三角形,按圖2擺放:點A與點C重合,CD落在AD′上,直接寫出BDB′D′的關系:_____;

3)在圖2的基礎上將AB′D′向左平移,點B′B重合停止,設ACx,兩個三角形重合部分的封閉圖形的周長為y,請用x表示y____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,線段相交于,連結,我們把形如圖的圖形稱之為字形,如圖,在圖的條件下,的平分線相交于點,并且與分別相交于、,試解答下列問題:

(1)在圖中,請直接寫出、、、之間的數(shù)量關系:__________

(2)仔細觀察,在圖字形的個數(shù):______個;

(3)中,當度,度時,求的度數(shù).

(4)為任意角時,其它條件不變,試問之間存在著怎樣的數(shù)量關系?(直接寫出結果,不必證明)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某水果店以4元/千克的價格購進一批水果,由于銷售狀況良好,該店又再次購進同一種水果,第二次進貨價格比第一次每千克便宜了0.5元,所購水果重量恰好是第一次購進水果重量的2倍,這樣該水果店兩次購進水果共花去了2200元.

(1)該水果店兩次分別購買了多少元的水果?

(2)在銷售中,盡管兩次進貨的價格不同,但水果店仍以相同的價格售出,若第一次購進的水果有3%的損耗,第二次購進的水果有5%的損耗,該水果店希望售完這些水果獲利不低于1244元,則該水果每千克售價至少為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AC,EC分別為正方形ABCD和正方形EFCG的對角線,點E在ABC內,連接BF,CAE+CBE=90°

1求證:CAE∽△CBF;

2若BE=1,AE=2,求CE的長

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了維護國家主權和海洋權力,海監(jiān)部門對我國領海實現(xiàn)了常態(tài)化巡航管理,如圖,正在執(zhí)行巡航任務的海監(jiān)船以每小時50海里的速度向正東方航行,在處測得燈塔在北偏東方向上,繼續(xù)航行1小時到達處,此時測得燈塔在北偏東方向上.

(1)求的度數(shù);

(2)已知在燈塔的周圍25海里內有暗礁,問海監(jiān)船繼續(xù)向正東方向航行是否安全?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD 的邊長為4,E AB 上一點,且AE=3 ,F BC 邊上的一個動點,連接EF ,以EF 為邊向左側作等腰直角三角形FEG EG=EF,∠GEF=90°,連接AG ,則AG 的最小值為________________

查看答案和解析>>

同步練習冊答案