【題目】如圖所示,△ABC中,AC=BC,以BC為直徑作⊙O交AB于點(diǎn)D,交AC于點(diǎn)G,作直線DF⊥AC交AC于點(diǎn)F,交CB的延長(zhǎng)線于點(diǎn)E.
(1)求證:直線EF四⊙O的切線;
(2)若BC=6,AB=4,求DE的長(zhǎng).
【答案】(1)、證明過程見解析;(2)、6
【解析】
試題分析:(1)、連結(jié)OD,如圖,通過證明OD∥AC,加上DF⊥AC,于是可得到DF⊥OD,然后根據(jù)切線的判定定理可得DF為⊙O的切線;,(2)、連結(jié)CD,作DH⊥BC于H,如圖,先利用圓周角定理得到∠BDC=90°,則根據(jù)等腰三角形的性質(zhì)得BD=AD=AB=2,在Rt△BDC中可利用勾股定理計(jì)算出CD=2,再利用面積法克計(jì)算出DH=2,接著根據(jù)勾股定理計(jì)算出OH=1,然后證明Rt△ODH∽Rt△OED,利用相似比可計(jì)算出DE.
試題解析:(1)、連結(jié)OD,如圖,∵AC=BC,∴∠A=∠ABC,∵OB=OD,∴∠ODB=∠OBD,∴∠ODB=∠A,
∴OD∥AC,而DF⊥AC,∴DF⊥OD,∴DF為⊙O的切線;
(2)、連結(jié)CD,作DH⊥BC于H,如圖,∵BC為直徑,∴∠BDC=90°,而CA=CB,∴BD=AD=AB=2,
在Rt△BDC中,CD==2,∵DHBC=DECD,∴DH==2,
在Rt△ODH中,OH==1,∵∠DOH=∠EOD,∴Rt△ODH∽Rt△OED,∴=,即=,
∴DE=6.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校學(xué)生會(huì)準(zhǔn)備調(diào)查七年級(jí)敘述參加“繪畫類”、“書法類”、“樂器類”四類校本課程的人數(shù),在全校進(jìn)行隨機(jī)抽樣調(diào)查,并根據(jù)收集的數(shù)據(jù)繪制了如圖兩幅統(tǒng)計(jì)圖(信息尚不完整),請(qǐng)根據(jù)圖中提供的信息,解答下面的問題:
(1)此次共調(diào)查了多少名同學(xué)?
(2)將條形圖補(bǔ)充完整,并計(jì)算扇形統(tǒng)計(jì)圖中樂器部分的圓心角的度數(shù);
(3)如果該校共有1000名學(xué)生參加這4個(gè)課外興趣小組,而每個(gè)教師最多只能輔導(dǎo)本組的25名學(xué)生,估計(jì)書法興趣小組至少需要準(zhǔn)備多少名教師?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長(zhǎng)為6的正方形ABCD中,E是邊CD的中點(diǎn),將△ADE沿AE對(duì)折至△AFE,延長(zhǎng)EF交邊BC于點(diǎn)G,連接AG.
(1)求證:△ABG≌△AFG;(2)求BG的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知⊙O的半徑為3,圓心O到直線l的距離為2,則直線l與⊙O的位置關(guān)系是( )
A. 無(wú)法確定 B. 相切 C. 相交 D. 相離
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一組數(shù)據(jù):6、3、4、x、7,它們的平均數(shù)是5,則這組數(shù)據(jù)的中位數(shù)是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)P為⊙O外一點(diǎn),若點(diǎn)P到⊙O的最短距離為3,最長(zhǎng)距離為7,則⊙O的半徑為( 。
A. 3B. 2C. 4或10D. 2或5
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com