3.己知直線y=kx+b與雙曲線y=$\frac{m}{x}$(x>0,m>0)交于A(x1,y1),B(x2,y2)兩點(x1<x2),直線AB與x軸交于P(x0,0),與y軸交于點C,猜想并用等式表示x1,x2,x0之間的關(guān)系,請說明理由.

分析 根據(jù)反比例函數(shù)圖象上點的坐標特征,得到m=x1•y1=x2y2,求得y1=$\frac{{x}_{2}{y}_{2}}{{x}_{1}}$,把A、B的坐標代入y=kx+b求得k=$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$,b=$\frac{{x}_{1}{y}_{2}-{x}_{2}{y}_{1}}{{x}_{1}-{x}_{2}}$,從而得出直線為y=$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$x+$\frac{{x}_{1}{y}_{2}-{x}_{2}{y}_{1}}{{x}_{1}-{x}_{2}}$,令y=0,得到x0=$\frac{{x}_{1}{y}_{2}-{x}_{2}{y}_{1}}{{y}_{1}-{y}_{2}}$,把y1=$\frac{{x}_{2}{y}_{2}}{{x}_{1}}$代入化簡即可求得x0=x1+x2

解答 解:猜想:x1,x2,x0之間的關(guān)系為x1+x2=x0
∵直線y=kx+b與雙曲線y=$\frac{m}{x}$(x>0,m>0)交于A(x1,y1),B(x2,y2)兩點(x1<x2),
∴m=x1•y1=x2y2,
∴y1=$\frac{{x}_{2}{y}_{2}}{{x}_{1}}$
∵直線y=ax+b經(jīng)過A、B兩點,
∴$\left\{\begin{array}{l}{{x}_{1}k+b={y}_{1}}\\{{x}_{2}k+b={y}_{2}}\end{array}\right.$解得k=$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$,b=$\frac{{x}_{1}{y}_{2}-{x}_{2}{y}_{1}}{{x}_{1}-{x}_{2}}$,
∴直線為y=$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$x+$\frac{{x}_{1}{y}_{2}-{x}_{2}{y}_{1}}{{x}_{1}-{x}_{2}}$,
令y=0,則x0=-$\frac{{x}_{1}{y}_{2}-{x}_{2}{y}_{1}}{{y}_{1}-{y}_{2}}$=-$\frac{{x}_{1}{y}_{2}-{x}_{2}•\frac{{x}_{2}{y}_{2}}{{x}_{1}}}{\frac{x{{\;}_{2}y}_{2}}{{x}_{1}}-{y}_{2}}$=-$\frac{{{x}_{1}}^{2}-{{x}_{2}}^{2}}{{x}_{2}-{x}_{1}}$=-$\frac{({x}_{1}+{x}_{2})({x}_{1}-{x}_{2})}{{x}_{2}-{x}_{1}}$=x1+x2

點評 本題考查了待定系數(shù)法求解析式以及反比例函數(shù)和一次函數(shù)的交點問題,根據(jù)m=x1•y1=x2y2,得出y1=$\frac{{x}_{2}{y}_{2}}{{x}_{1}}$是解題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:解答題

13.一艘載重480噸的船,容積是1050立方米,現(xiàn)有甲種貨物450立方米,乙種貨物350噸,而甲種貨物每噸體積2.5立方米,乙種貨物每立方米0.5噸.問是否都能裝上船?如果不能,請說明理由;并求出為了最大限度的利用船的載重量和容積,兩種貨物應各裝多少噸?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

14.2015年年底,NBA運動員科比宣布將在本賽季結(jié)束后退役,一代名將即將告別喜歡他的無數(shù)球迷.如圖是科比在一場比賽中正在投籃,已知該場比賽中,科比兩分球和三分球一共投進了25個,兩項共得57分.如果設他分別投中了x個兩分球和y個三分球,可得二元一次方程組$\left\{\begin{array}{l}x+y=25\\ 2x+3y=57\end{array}\right.$.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

11.若m是方程3x-2=1的解,則30m+10的值為40.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

18.一只螳螂在一圓柱形松樹樹干的A點處,發(fā)現(xiàn)它的正上方B點處有一只小蟲子,螳螂想捕到這只蟲子,但又怕被發(fā)現(xiàn),于是按如圖所示的路線,繞到蟲子后面吃掉它.已知樹干的周長為20cm,A、B兩點的距離為15cm.若螳螂想吃掉在B點的小蟲子,求螳螂繞行的最短路程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

8.如圖,在平面直角坐標系中,已知點P(5,5),點B、A分別在x軸、y軸正半軸上,且∠APB=90°,則OA+OB=10.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

15.(1)連續(xù)投擲一枚均勻的骰子三次,將擲得的點數(shù)一次作為百位、十位、個位數(shù)字組成一個三位數(shù),求得到個位數(shù)字為5的三位數(shù)的概率.
(2)如果將拋擲骰子換成摸球,即在不透明的袋中放入標有數(shù)字1,2,3,4,5,6的六個形狀,大小完全相同的小球,依次從袋中摸出3個球(每次摸出一個球.且摸出的球不再放回袋中),將球上所標的數(shù)字分別作為百位、十位和個位數(shù)字組成-個三位數(shù),那么得到個位數(shù)字為5的三位數(shù)的概率與(1)的結(jié)果相同嗎?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

12.一個矩形的長和寬分別是$\sqrt{15}$cm和3$\sqrt{3}$cm,則這個矩形的面積為9$\sqrt{5}$cm2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

13.如圖,在矩形ABCD中,E為邊CD的中點,連接AE、BE、BE交AC于點O
(1)求證:AE=BE;
(2)求$\frac{OE}{OB}$的值.

查看答案和解析>>

同步練習冊答案