【題目】如圖,⊙OABC的外接圓,AB是⊙O的直徑,延長AB到點E,連接EC,使得∠BCE=BAC

(1)求證:EC是⊙O的切線;

(2)過點AADEC的延長線于點D,AD=5,DE=12,求⊙O的半徑.

【答案】(1)證明見解析;(2) .

【解析】

(1)連結(jié)OC,根據(jù)圓周角定理由AB是⊙O的直徑得∠1+2=90°,而∠1=A,A=BCE,所以∠BCE=1,即∠BCE+2=90°,然后根據(jù)切線的判定定理即可得到EC是⊙O的切線;

(2)設(shè)⊙O的半徑為r,在RtADE中利用勾股定理計算出AE=13,則OE=13-r,OC=r,證明EOC∽△EAD,利用相似比得到,即,然后解方程即可得到圓的半徑.

(1)證明:連結(jié)OC,如圖,

AB是⊙O的直徑

∴∠ACB=90°,即∠BCO+ACO=90°,

OC=OA,

∴∠OCA=BAC,

又∵∠BCE=BAC,

∴∠BCE=OCA,

∴∠BCE+BCO=90°,

OCEC,

EC是⊙O的切線;

(2)解:設(shè)⊙O的半徑為r,

RtADE中,AD=5,ED=12,AE==13,

OE=13-r,OC=r

OCEC,

ADEC,

OCAD,

∴△EOC∽△EAD,

,即,

r=,

即⊙O的半徑為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點A(a-1,a+b),B(a,0),且|a+b-3|+(a-2b)2=0,C為x軸上點B右側(cè)的動點,以AC為腰作等腰三角形ACD,使AD=AC,∠CAD=∠OAB,直線DB交y軸于點P.

(1)求證:AO=AB;

(2)求證:△AOC≌△ABD;

(3)當(dāng)點C運動時,點P在y軸上的位置是否發(fā)生改變,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)課外活動小組準(zhǔn)備圍建一個矩形生物苗圃園,其中一邊靠墻,另外三邊用長為米的籬笆圍成,已知墻長為米.設(shè)這個苗圃園垂直于墻的一邊的長為米某中學(xué)課外活動小組準(zhǔn)備圍建一個矩形生物苗圃園,其中一邊靠墻,另外三邊用長為米的籬笆圍成,已知墻長為米.設(shè)這個苗圃園垂直于墻的一邊的長為

用含的代數(shù)式表示平行于墻的一邊的長為________米,的取值范圍為________;

這個苗圃園的面積為平方米時,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,一次函數(shù)y=kx+bk、b為常數(shù),k≠0)的圖象與x軸、y軸分別交于AB兩點,且與反比例函數(shù)y=n為常數(shù)且n≠0)的圖象在第二象限交于點CCDx軸,垂直為D,若OB=2OA=3OD=6

1)求一次函數(shù)與反比例函數(shù)的解析式;

2)求兩函數(shù)圖象的另一個交點坐標(biāo);

3)直接寫出不等式;kx+b≤的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,△ABC△ECD都是等腰直角三角形,∠ACD=∠DCE=90°,DAB邊上一點.求證:(1)BD=AE(2)若線段AD=5,AB=17,求線段ED的長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=CB,∠ABC=90°,DAB延長線上一點,點EBC邊上,且BE=BD,連結(jié)AE、DE、DC

①求證:△ABE≌△CBD;

②若∠CAE=30°,求∠BDC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為發(fā)展學(xué)生的核心素養(yǎng),培養(yǎng)學(xué)生的綜合能力,某學(xué)校計劃開設(shè)四門選修課:樂器、舞蹈、繪畫、書法,學(xué)校采取隨機抽樣的方法進行問卷調(diào)查每個被調(diào)查的學(xué)生必須選擇而且只能選擇其中一門對調(diào)查結(jié)果進行整理,繪制成如下兩幅不完整的統(tǒng)計圖請結(jié)合圖中所給信息解答下列問題:

本次調(diào)查的學(xué)生共有______人,在扇形統(tǒng)計圖中,m的值是______

分別求出參加調(diào)查的學(xué)生中選擇繪畫和書法的人數(shù),并將條形統(tǒng)計圖補充完整.

該校共有學(xué)生2000人,估計該校約有多少人選修樂器課程?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】繞點逆時針旋轉(zhuǎn)得到,的延長線與相交于點,連接

如圖,若

求證:;②猜想線段、的數(shù)量關(guān)系,并證明你的猜想;

如圖,若為常數(shù)),求的值(用含、的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,,點三條角平分線的交點,,,,且,,則點到三邊、的距離為(

A. 2cm,2cm,2cm B. 3cm,3cm,3cm

C. 4cm,4cm,4cm D. 2cm,3cm,5cm

查看答案和解析>>

同步練習(xí)冊答案