【題目】如圖,△ABC中,E是AC上一點(diǎn),且AE=AB,∠BAC=2∠EBC ,以AB為直徑的⊙O交AC于點(diǎn)D,交EB于點(diǎn)F.
(1)求證:BC與⊙O相切;
(2)若AB=8,BE=4,求BC的長(zhǎng).
【答案】(1)證明見解析;(2)BC=
【解析】
(1)運(yùn)用切線的判定,只需要證明AB⊥BC即可,即證∠ABC=90°. 連接AF,依據(jù)直徑所對(duì)圓周角為90度,可以得到∠AFB=90°,依據(jù)三線合一可以得到2∠BAF=∠BAC,再結(jié)合已知條件進(jìn)行等量代換可得∠BAF=∠EBC,最后運(yùn)用直角三角形兩銳角互余及等量代換即可.
(2)依據(jù)三線合一可以得到BF的長(zhǎng)度,繼而算出∠BAF=∠EBC的正弦值,過E作EG⊥BC于點(diǎn)G,利用三角函數(shù)可以解除EG的值,依據(jù)垂直于同一直線的兩直線平行,可得EG與AB平行,從而得到相似三角形,依據(jù)相似三角形的性質(zhì)可以求出AC的長(zhǎng)度,最后運(yùn)用勾股定理求出BC的長(zhǎng)度.
(1)證明:連接AF.
∵AB為直徑, ∴∠AFB=90°.
又∵AE=AB,
∴2∠BAF=∠BAC,∠FAB+∠FBA=90°.
又∵∠BAC=2∠EBC,
∴∠BAF=∠EBC,
∴∠FAB+∠FBA=∠EBC+∠FBA=90°.
∴∠ABC=90°.即AB⊥BC,
∴BC與⊙O相切;
(2)解:過E作EG⊥BC于點(diǎn)G,
∵AB=AE,∠AFB=90°,
∴BF=BE=×4=2,
∴sin∠BAF=,
又∵∠BAF=∠EBC,
∴sin∠EBC=.
又∵在△EGB中,∠EGB=90°,
∴EG=BEsin∠EBC=4×=1,
∵EG⊥BC,AB⊥BC,
∴EG∥AB,
∴△CEG∽△CAB,
∴.
∴,
∴CE=,
∴AC=AE+CE=8+=.
在Rt△ABC中,
BC=
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小李經(jīng)營(yíng)的車飾店銷售某品牌車漆修復(fù)液,已知其進(jìn)價(jià)為40元/支,試銷階段發(fā)現(xiàn)將售價(jià)定為80元/支時(shí),每天可銷售20支,后來為了擴(kuò)大銷售量,小李適當(dāng)降低了售價(jià),銷售量y(支)與降價(jià)x(元)的關(guān)系如圖所示.
(1)請(qǐng)仔細(xì)讀題,并補(bǔ)全下面表格:
降價(jià)x/元 | … | 2 | 4 |
| x | … |
銷量y/支 | … | 24 | 28 | 30 |
| … |
(2)若要使得平均每天銷售這種修復(fù)液的利潤(rùn)W最大,則每支修復(fù)液應(yīng)該降價(jià)多少元?最大的利潤(rùn)W為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線與軸、軸分別交于、兩點(diǎn),拋物線經(jīng)過、兩點(diǎn),與軸的另一個(gè)交點(diǎn)為,且.
(1)求拋物線的解析式;
(2)點(diǎn)在上,點(diǎn)在的延長(zhǎng)線上,且,連接交于點(diǎn),點(diǎn)為第一象限內(nèi)的一點(diǎn),當(dāng)是以為斜邊的等腰直角三角形時(shí),連接,設(shè)的長(zhǎng)度為,的面積為,請(qǐng)用含的式子表示,并寫出自變量的取值范圍;
(3)在(2)的條件下,連接、,將沿翻折到的位置(與對(duì)應(yīng)),若,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在每個(gè)小正方形的邊長(zhǎng)為1的網(wǎng)格中,取格點(diǎn)A、B、C并連接AB,BC.取格點(diǎn)D、E并連接,交AB于點(diǎn)F.
(Ⅰ)AB的長(zhǎng)等于_____;
(Ⅱ)若點(diǎn)G在線段BC上,且滿足AF+CG=FG,請(qǐng)?jiān)谌鐖D所示的網(wǎng)格中,用無刻度的直尺,確定點(diǎn)G的位置,并簡(jiǎn)要說明點(diǎn)G的位置是如何找到的.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A(-2,m),B(2,m),C(3,m﹣n)(n>0)在同一個(gè)函數(shù)的圖象上,這個(gè)函數(shù)可能是( 。
A.y=xB.y=﹣C.y=x2D.y=﹣x2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,△ABC 中,AC=BC,∠ACB=90°.請(qǐng)用直角三角尺(僅可畫直角或直線)在圖中畫出一個(gè)點(diǎn)P,使得∠APB=45°;
(2)如圖2,△ABC 中,AB=a,∠ACB=,請(qǐng)用直尺和圓規(guī)作出一個(gè)點(diǎn)Q,使點(diǎn)Q與點(diǎn)C在AB同側(cè),QA=QB,∠AQB=;(不寫作法,保留作圖痕跡)
(3)如圖3,若 AC=BC=,∠ACB=90°,以點(diǎn)A為原點(diǎn),直線AB 為 x 軸,過點(diǎn)A垂直于AB的直線為 y 軸,建立平面直角坐標(biāo)系,直線y= - x+b(b>0)交 x 軸于點(diǎn)M,交 y 軸于點(diǎn)N.當(dāng)點(diǎn)P在直線MN上,且∠APB=45°,求點(diǎn)P的個(gè)數(shù)及對(duì)應(yīng)的b的取值范圍;
(4)如圖4,△ABC 中,AB=a,∠ACB=,請(qǐng)用直尺和圓規(guī)作出點(diǎn)P,使得∠APB=且AP+BP最大,請(qǐng)簡(jiǎn)要說明理由.(不寫作法,保留作圖痕跡)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c的圖象如圖所示,經(jīng)過(﹣1,0)、(3,0)、(0,﹣3).
(1)求二次函數(shù)的解析式;
(2)不等式ax2+bx+c>0的解集為 ;
(3)方程ax2+bx+c=m有兩個(gè)實(shí)數(shù)根,m的取值范圍為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)已知,求一次函數(shù)所經(jīng)過的象限;
(2)已知與相似,且的三邊長(zhǎng)分別為6、8、4,其中一邊長(zhǎng)為2,試求的另外兩邊長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)是等邊內(nèi)一點(diǎn),且,點(diǎn)是邊的中點(diǎn),連接,.
(1)如圖1,若點(diǎn),,三點(diǎn)共線,則與的數(shù)量關(guān)系是______;
(2)如圖2,若點(diǎn),,三點(diǎn)不共線,問(1)中的結(jié)論還成立嗎?若成立,請(qǐng)給出證明,若不成立,請(qǐng)說明理由;
(3)如圖3,若,,直接寫出的長(zhǎng)是______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com