【題目】重慶一中渝北分校積極組織學生開展課外閱讀活動,為了解全校學生每周課外閱讀的時間量t單位:小時),采用隨機抽樣的方法抽取部分學生進行了問卷調查,調查結果按0t<2,2t<3,3t<4,t4分為四個等級,并分別用A、B、C、D表示根據(jù)調查結果統(tǒng)計數(shù)據(jù)繪制成了如圖所示的兩幅不完整的統(tǒng)計圖,由圖中給出的信息解答下列問題:

1求這次抽查的學生總數(shù)是多少人并求出x的值;

2將不完整的條形統(tǒng)計圖補充完整;

3若該校共有學生3600人,試估計每周課外閱讀時間量滿足2t<4的人數(shù)

【答案】1200人;x=30;2答案見解析;31440人

【解析】

試題分析:1根據(jù)A等級的人數(shù)和百分比求出總人數(shù);利用1減去A、C、D三個等級的百分比求出x的值;2各等級人數(shù)=總人數(shù)×本等級人數(shù)所占的百分比;3利用總人數(shù)乘以B、C兩個等級所占人數(shù)的百分比的和

試題解析:1總人數(shù)=90÷45%=200

x%+15%+10%+45%=1

解得:x=30

(2)B等級人數(shù):200×30%=60

C等級人數(shù)=200×10%=20

33600×10%+30%=1440

即每周課外閱讀時間量滿足2t<4的人數(shù)為1440人

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】請在橫線上填上合適的內容,完成下面的證明:

如圖,射線AH交折線ACGFEN于點B、D、E.已知∠A=∠1,∠C=∠F,BM平分∠CBD,EN平分∠FEH.求證:∠2=∠3.

證明:∵∠A=∠1(已知)

∴AC∥GF(

∴( )(

∵∠C=∠F(已知)

∴∠F=∠G

∴( )(

∴( )(

∵BM平分∠CBD,EN平分∠FEH

∴∠2= ∠3=

∴∠2=∠3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】填寫證明的理由:

已知,如圖ABCD,EF、CG分別是∠ABC、∠ECD的角平分線.

求證:EFCG

證明:∵ABCD(已知)

∴∠AEC=∠ECD   

EF平分∠AEC、CG平分∠ECD(已知)

∴∠1   ,∠2   (角平分線的定義)

∴∠1=∠2   

EFCG   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,某小區(qū)要用籬笆圍成一矩形花壇,花壇的一邊用足夠長的墻,另外三邊所用的籬笆之和恰好為米.

1求矩形的面積(用表示,單位平方米)與邊(用表示,單位米)之間的函數(shù)關系式(不要求寫出自變量的取值范圍);怎樣圍,可使花壇面積最大?

2如何圍,可使此矩形花壇面積是平方米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】A,B兩地被大山阻隔,若要從A地到B地,只能沿著如圖所示的公路先從A地到C地,再由C地到B地.現(xiàn)計劃開鑿隧道A,B兩地直線貫通,經(jīng)測量得:CAB=30°,CBA=45°,AC=20km,求隧道開通后與隧道開通前相比,從A地到B地的路程將縮短多少?(結果精確到0.1km,參考數(shù)據(jù): ≈1.414 ≈1.732

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c的頂點為M(﹣2,﹣4),與x軸交于A、B兩點,且A(﹣6,0),與y軸交于點C.

(1)求拋物線的函數(shù)解析式;

(2)求△ABC的面積;

(3)能否在拋物線第三象限的圖象上找到一點P,使△APC的面積最大?若能,請求出點P的坐標;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,RtABC中,AC=BC=2,正方形CDEF的頂點D、F分別在AC、BC邊上,CD兩點不重合,設CD的長度為x,ABC與正方形CDEF重疊部分的面積為y,則下列圖象中能表示yx之間的函數(shù)關系的是(

A. A B. B C. C D. D

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列圖案由邊長相等的黑,白兩色正方形按一定規(guī)律拼接而成,設第個圖案中白色小正方形的個數(shù)為.

1)第2個圖案中有______個白色的小正方形;第3個圖案中有______個白色的小正方形;之間的函數(shù)表達式為______(直接寫出結果).

2)是否存在這樣的圖案,使白色小正方形的個數(shù)為2019個?如果存在,請指出是第幾個圖案;如果不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2019214日,備受關注的《成都市中小學課后服務實施意見》正式出臺.某區(qū)為了解家長更希望如何安排孩子放學后的時間,對該區(qū)七年級部分家長進行了一次問卷調查(每位同學只選擇一位家長參與調查),將調查結果(.回家,家人陪伴;.學校課后延時服務;.校外培訓機構;.社會托管班)繪制成以下兩幅不完整的統(tǒng)計圖.請根據(jù)圖中提供的信息,解答下列問題:

1)本次調查的家長總人數(shù)為

2)補全條形統(tǒng)計圖:扇形統(tǒng)計圖中,類所對應的圓心角為 度;

3)若該區(qū)共有七年級學生人,則愿意參加學生課后延時服務的人數(shù)大概是多少?

查看答案和解析>>

同步練習冊答案