【題目】在我市區(qū)某中學美化校園招標時,有甲、乙兩個工程隊投標,經(jīng)測算:甲隊單獨完成這項工程需要天;若由甲隊先做天,剩下的工程由甲、乙合做天可完成.

(1)乙隊單獨完成這項工程需要多少天?

(2)甲隊施工一天,需付工程款萬元,乙隊施工一天需付工程款萬元,若該工程計劃在天內(nèi)完成,在不超過計劃天數(shù)的前提下,是由甲隊或乙隊單獨完成該工程省錢,還是由甲乙兩隊全程合作完成該工程省錢?

【答案】145天;(2)甲、乙兩隊全程合作完成該工程省錢.

【解析】

1)設乙隊單獨完成這項工程需要x天,則甲施工了10+12天,乙施工了12天,即可得出關(guān)于x的分式方程,解之經(jīng)檢驗后即可求出結(jié)論;

2)先求出甲乙合作的時間,再分別求出甲隊單獨完成以及甲、乙兩隊全程合作完成該工程所需費用,比較后即可得出結(jié)論.

解:(1)設乙隊單獨完成這項工程需要x天,

依題意,得:

解得:x=45,

經(jīng)檢驗,x=45是所列分式方程的解,且符合題意.

答:乙隊單獨完成這項工程需要45天.

21÷(=18(天),

甲隊單獨完成該工程所需費用為3.5×30=105(萬元);

∵乙隊單獨完成該工程需要45天,超過35天的工期,

∴不能由乙隊單獨完成該項工程;

甲、乙兩隊全程合作完成該工程所需費用為(3.5+2)×18=99(萬元),

∵10599,

在不超過計劃天數(shù)的前提下,由甲、乙兩隊全程合作完成該工程省錢.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某商場銷售一批名牌襯衫,平均每天可銷售20,每件盈利40.為了擴大銷售,增加盈利,盡量減少庫存,商場決定采取適當?shù)慕祪r措施.經(jīng)調(diào)查發(fā)現(xiàn),如果每件襯衫每降價5,商場平均每天可多售出10.:

(1)若商場每件襯衫降價4,則商場每天可盈利多少元?

(2)若商場平均每天要盈利1200,每件襯衫應降價多少元?

(3)要使商場平均每天盈利1600,可能嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=kx+bk≠0)與拋物線y=ax2a≠0)交于AB兩點,且點A的橫坐標是-2,點B的橫坐標是3,則以下結(jié)論:

拋物線y=ax2a≠0)的圖象的頂點一定是原點;

②x0時,直線y=kx+bk≠0)與拋物線y=ax2a≠0)的函數(shù)值都隨著x的增大而增大;

③AB的長度可以等于5;

④△OAB有可能成為等邊三角形;

-3x2時,ax2+kxb,

其中正確的結(jié)論是( )

A. ①②④ B. ①②⑤ C. ②③④ D. ③④⑤

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】操作探究:

數(shù)學研究課上,老師帶領(lǐng)大家探究《折紙中的數(shù)學問題》時,出示如圖1所示的長方形紙條ABCD,其中AD=BC=1,AB=CD=5.然后在紙條上任意畫一條截線段MN,將紙片沿MN折疊,MB與DN交于點K,得到MNK.如圖2所示:

探究:

(1)若1=70°MKN= °;

(2)改變折痕MN位置,MNK始終是 三角形,請說明理由;

應用:

(3)愛動腦筋的小明在研究MNK的面積時,發(fā)現(xiàn)KN邊上的高始終是個不變的值.根據(jù)這一發(fā)現(xiàn),他很快研究出KMN的面積最小值為,此時1的大小可以為 °

(4)小明繼續(xù)動手操作,發(fā)現(xiàn)了MNK面積的最大值.請你求出這個最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:圖象①②③均是以P0為圓心,1個單位長度為半徑的扇形,將圖形①②③分別沿東北,正南,西北方向同時平移,每次移動一個單位長度,第一次移動后圖形①②③的圓心依次為P1P2P3,第二次移動后圖形①②③的圓心依次為P4P5P6,依此規(guī)律,P0P2018=_____個單位長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知中,,,點、分別是軸和軸上的一動點.

(1)如圖,若點的橫坐標為,求點的坐標;

(2)如圖,軸于,平分,若點的縱坐標為,,求點的坐標.

(3)如圖,分別以、為直角邊在第三、四象限作等腰直角和等腰直角,軸于,若,求.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AD為∠BAC的平分線,添下列條件后,不能證明△ABD≌△ACD的是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知FGAB,CDAB,垂足分別為GD,∠1=∠2,

求證:∠CED+ACB180°,

請你將小明的證明過程補充完整.

證明:∵FGAB,CDAB,垂足分別為GD(已知)

∴∠FGB=∠CDB90°(   )

GFCD(   )

GFCD(已證)

∴∠2=∠BCD(   )

又∵∠1=∠2(已知)

∴∠1=∠BCD(   )

   (   )

∴∠CED+ACB180°(   )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于點C,交y軸于點B,交x軸于點D,那么不等式的解集是______

查看答案和解析>>

同步練習冊答案