如圖,在邊長為6的正方形ABCD中,E是AB邊上一點,G是AD延長線上一點,BE=DG,連接EG,CF⊥EG交EG于點H,交AD于點F,連接CE,BH.若BH=8,則FG= .
5【考點】全等三角形的判定與性質;等腰直角三角形;正方形的性質;相似三角形的判定與性質.
【專題】幾何圖形問題;壓軸題.
【分析】如解答圖,連接CG,首先證明△CGD≌△CEB,得到△GCE是等腰直角三角形;過點H作AB、BC的垂線,垂足分別為點M、N,進而證明△HEM≌△HCN,得到四邊形MBNH為正方形,由此求出CH、HN、CN的長度;最后利用相似三角形Rt△HCN∽Rt△GFH,求出FG的長度.
【解答】解:如圖所示,連接CG.
在△CGD與△CEB中
∴△CGD≌△CEB(SAS),
∴CG=CE,∠GCD=∠ECB,
∴∠GCE=90°,即△GCE是等腰直角三角形.
又∵CH⊥GE,
∴CH=EH=GH.
過點H作AB、BC的垂線,垂足分別為點M、N,則∠MHN=90°,
又∵∠EHC=90°,
∴∠1=∠2,
∴∠HEM=∠HCN.
在△HEM與△HCN中,
∴△HEM≌△HCN(ASA).
∴HM=HN,
∴四邊形MBNH為正方形.
∵BH=8,
∴BN=HN=4,
∴CN=BC﹣BN=6﹣4=2.
在Rt△HCN中,由勾股定理得:CH=2.
∴GH=CH=2.
∵HM∥AG,
∴∠1=∠3,
∴∠2=∠3.
又∵∠HNC=∠GHF=90°,
∴Rt△HCN∽Rt△GFH.
∴,即,
∴FG=5.
故答案為:5.
【點評】本題是幾何綜合題,考查了全等三角形、相似三角形、正方形、等腰直角三角形、勾股定理等重要知識點,難度較大.作出輔助線構造全等三角形與相似三角形,是解決本題的關鍵.
科目:初中數(shù)學 來源: 題型:
如圖,在平面直角坐標系xOy中,四邊形ODEF和四邊形ABCD都是正方形,點F在x軸的正半軸上,點C在邊DE上,反比例函數(shù)y=(k≠0,x>0)的圖象過點B,E.若AB=4,則k的值為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖1,A、B兩地在一條河的兩岸,現(xiàn)要在河上造一座橋MN.橋造在何處才能使從A到B的路徑AMNB最短?(假定河的兩岸是平行的直線,橋要與河垂直)
【問題解決】
如圖2,過點B作BB′⊥l2,且BB′等于河寬,連接AB′交l1于點M,作MN⊥l1交l2于點N,則MN就為橋所在的位置.
【類比聯(lián)想】
(1)如圖3,正方形ABCD中,點E、F、G分別在AB、BC、CD上,且AF⊥GE,求證:AF=EG.
(2)如圖4,矩形ABCD中,AB=2,BC=x,點E、F、G、H分別在AB、BC、CD、AD上,且EG⊥HF,設y=,試求y與x的函數(shù)關系式.
【拓展延伸】
如圖5,一架長5米的梯子斜靠在豎直的墻面OE上,初始位置時OA=4米,由于地面OF較光滑,梯子的頂端A下滑至點C時,梯子的底端B左滑至點D,設此時AC=a米,BD=b米.
(3)當a= 1 米時,a=b.
(4)當a在什么范圍內時,a<b?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
電影《劉三姐》中,秀才和劉三姐對歌的場面十分精彩.羅秀才唱道:“三百條狗交給你,一少三多四下分,
不要雙數(shù)要單數(shù),看你怎樣分得均?”劉三姐示意舟妹來答,舟妹唱道:“九十九條打獵去,九十九條看羊來,九十九條守門口,剩下三條財主請來當奴才.”若用數(shù)學方法解決羅秀才提出的問題,設“一少”的狗有x條,“三多”的狗有y條,則解此問題所列關系式正確的是( 。
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
下列四個命題中,假命題是( 。
A.兩角對應相等,兩個三角形相似
B.三邊對應成比例,兩個三角形相似
C.兩邊對應成比例且其中一邊的對角相等,兩個三角形相似
D.兩邊對應成比例且夾角相等,兩個三角形相似
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
隨著體育中考的臨近,我校隨機地調查了50名學生,了解他們一周在校的體育鍛煉時間,結果如下表所示:
時間(小時) | 5 | 6 | 7 | 8 |
人數(shù) | 4 | 15 | 15 | 16 |
則這50名學生這一周在校的體育鍛煉時間的眾數(shù)為 ,平均數(shù)為
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
某旅游區(qū)有一個景觀奇異的望天洞,D點是洞的入口,游人從入口進洞游覽后,可經(jīng)山洞到達山頂?shù)某隹跊鐾處觀看旅游區(qū)風景,最后坐纜車沿索道AB返回山腳下的B處.在同一平面內,若測得斜坡BD的長為100米,坡角∠DBC=10°,在B處測得A的仰角∠ABC=40°,在D處測得A的仰角∠ADF=85°,過D點作地面BE的垂線,垂足為C.
(1)求∠ADB的度數(shù);
(2)求索道AB的長.(結果保留根號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com