【題目】如圖,在四邊形ABCD中,AD//BC,∠A=∠CCD=2AD,BEAD于點(diǎn)E,FCD的中點(diǎn),連接EF、BF

(1)求證:四邊形ABCD是平行四邊形;

(2)求證:BF平分∠ABC;

(3)請(qǐng)判斷△BEF的形狀,并證明你的結(jié)論.

【答案】1)見(jiàn)解析;(2)見(jiàn)解析;(3ΔBEF為等腰三角形,見(jiàn)解析.

【解析】

1)由平行線的性質(zhì)得出∠A+ABC=180°,由已知得出∠C+ABC=180°,證出AB//BC,即可得出四邊形ABCD是平行四邊形;

2)由平行四邊形的性質(zhì)得出BC=ADAB//CD,得出∠CFB=ABF,由已知得出CF=BC,得出∠CFB=CBF,證出∠ABF=CBF即可;

3)作FGBEG,證出FG/AD//BC,得出EG=BG,由線段垂直平分線的性質(zhì)得出EF=BF即可.

解:(1)證明:ADBC,

∴∠A+∠ABC=180°

∵∠A=∠C

∴∠C+∠ABC=180°

ABCD

∴四邊形ABCD是平行四邊形

2)證明:

F點(diǎn)為CD中點(diǎn)

CD=2CF

CD=2AD

CF=AD=BC

∴∠CFB=∠CBF

CDAB

∴∠CFB=∠FBA

∴∠FBA=∠CBF

BF平分∠ABC

(3)ΔBEF為等腰三角形

理由:如圖,延長(zhǎng)EFB延長(zhǎng)線于點(diǎn)G

DABG

∴∠G=∠DEF

FDC中點(diǎn)

DF=CF

又∵∠DFE=∠CFG

ΔDFEΔCFG(AAS)

FE=FG

ADBCBEAD

BECD

∴∠EBG=90°

RtΔEBG中,FBG中點(diǎn)

BF=EG=EF

ΔBEF為等腰三角形。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知DE是直角梯形ABCD的高,將ADE沿DE翻折,腰AD恰好經(jīng)過(guò)腰BC的中點(diǎn),則AE:BE等于( )

A.2:1 B.1:2 C.3:2 D.2:3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一次函數(shù)與正比例函數(shù)、常數(shù),且,在同一坐標(biāo)系中的大致圖象是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)如圖1所示,在RtABC中,∠ACB=90°,AC=BC,點(diǎn)D在斜邊AB上,點(diǎn)E在直角邊BC上,若∠CDE=45°,求證:△ACD∽△BDE.

(2)如圖2所示,在矩形ABCD中,AB=4cm,BC=10cm,點(diǎn)EBC上,連接AE,過(guò)點(diǎn)EEFAECD(或CD的延長(zhǎng)線)于點(diǎn)F.

①若BE:EC=1:9,求CF的長(zhǎng);

②若點(diǎn)F恰好與點(diǎn)D重合,請(qǐng)?jiān)趥溆脠D上畫(huà)出圖形,并求BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,,邊上的高,過(guò)點(diǎn),過(guò)點(diǎn),交于點(diǎn),交于點(diǎn),連結(jié)

1)求證:四邊形是矩形;

2)求四邊形的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙O的內(nèi)接四邊形ABCD中,AC,BD是它的對(duì)角線,AC的中點(diǎn)I是△ABD的內(nèi)心.求證:

(1)OI是△IBD的外接圓的切線;

(2)AB+AD=2BD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法:①有一個(gè)角是的等腰三角形是等邊三角形;②如果三角形的一個(gè)外角平分線平行三角形的一邊,那么這個(gè)三角形是等腰三角形;③三角形三邊的垂直平分線的交點(diǎn)與三角形三個(gè)頂點(diǎn)的距離相等;④有兩個(gè)角相等的等腰三角形是等邊三角形.其中正確的個(gè)數(shù)有(

A. 個(gè)B. 個(gè)C. 個(gè)D. 個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知矩形ABCD,AB=6,BC=8,E,F(xiàn)分別是AB,BC的中點(diǎn),AF與DE相交于I,與BD相交于H,則四邊形BEIH的面積為(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某水果經(jīng)銷商上月份銷售一種新上市的水果,平均售價(jià)為10/千克,月銷售量為1000千克.經(jīng)市場(chǎng)調(diào)查,若將該種水果價(jià)格調(diào)低至x/千克,則本月份銷售量y(千克)與x(元/千克)之間符合一次函數(shù)關(guān)系,并且得到了表中的數(shù)據(jù):

價(jià)格x(元/千克)

7

5

價(jià)格y(千克)

2000

4000

1)求yx之間的函數(shù)解析式;

2)已知該種水果上月份的成本價(jià)為5/千克,本月份的成本價(jià)為4/千克,要使本月份銷售該種水果所獲利潤(rùn)比上月份增加20%,同時(shí)又要讓顧客得到實(shí)惠,那么該種水果價(jià)格每千克應(yīng)調(diào)低至多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案