【題目】中央政府為了應(yīng)對(duì)因人口老齡化而造成的勞動(dòng)力短缺等問(wèn)題,擬定出臺(tái)“延遲退休年齡政策”,為了了解人們對(duì)“延遲退休年齡政策”的態(tài)度,責(zé)成人社部進(jìn)行調(diào)研,人社部從網(wǎng)上年齡在15~65歲的人群中隨機(jī)調(diào)查100人,調(diào)查數(shù)據(jù)的頻率分布直方圖和支持“延遲退休”的人數(shù)與年齡的統(tǒng)計(jì)結(jié)果如下

年齡

[15,25)

[25,35)

[35,45)

[45,55)

[55,65]

支持“延遲退休”的人數(shù)

15

5

15

28

17


(1)由以上統(tǒng)計(jì)數(shù)據(jù)填2×2列聯(lián)表,并判斷是否95%的把握認(rèn)為以45歲為界點(diǎn)的不同人群對(duì)“延遲退休年齡政策”的支持有差異;

45歲以下

45歲以上

總計(jì)

支持

不支持

總計(jì)


(2)若以45歲為分界點(diǎn),從不支持“延遲退休”的人中按分層抽樣的方法抽取8人參加某項(xiàng)活動(dòng),現(xiàn)從這8人中隨機(jī)抽2人. ①抽到1人是45歲以下時(shí),求抽到的另一人是45歲以上的概率;
②記抽到45歲以上的人數(shù)為X,求隨機(jī)變量X的分布列及數(shù)學(xué)期望.

P(K2≥k0

0.100

0.050

0.010

0.001

k0

2.706

3.841

6.635

10.828

【答案】
(1)解:由統(tǒng)計(jì)數(shù)據(jù)填2×2列聯(lián)表如下,

45歲以下

45歲以上

總計(jì)

支持

35

45

80

不支持

15

5

20

總計(jì)

50

50

100

計(jì)算觀測(cè)值 ,

所以有95%的把握認(rèn)為以45歲為分界點(diǎn)的不同人群對(duì)“延遲退休政策”的支持度有差異


(2)解:①抽到1人是45歲以下的概率 ,抽到1人是45歲以上的概率是 ,

故所求的概率是P= × =

②根據(jù)題意,X的可能取值是0,1,2;

計(jì)算P(X=0)= = ,

P(X=1)= =

P(X=2)= = ,

可得隨機(jī)變量X的分布列為

X

0

1

2

P

故數(shù)學(xué)期望為E(X)=0× +1× +2× =


【解析】(1)由統(tǒng)計(jì)數(shù)據(jù)填寫(xiě)列聯(lián)表,計(jì)算觀測(cè)值,對(duì)照臨界值得出結(jié)論;(2)①求抽到1人是45歲以下的概率,再求抽到1人是45歲以上的概率,②根據(jù)題意知X的可能取值,計(jì)算對(duì)應(yīng)的概率值,寫(xiě)出隨機(jī)變量X的分布列,計(jì)算數(shù)學(xué)期望值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=|x2﹣2x﹣1|,若m>n>1,且f(m)=f(n),則mn的取值范圍為(
A.
B.
C.(1,3)
D.(1,3]

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義在R上的奇函數(shù)f(x)滿(mǎn)足f(x+1)=f(﹣x),當(dāng)x∈(0, ]時(shí),f(x)= (1﹣x),則f(x)在區(qū)間(1, )內(nèi)是(
A.減函數(shù)且f(x)>0
B.減函數(shù)且f(x)<0
C.增函數(shù)且f(x)>0
D.增函數(shù)且f(x)<0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC的內(nèi)角A、B、C的對(duì)邊分別為a、b、c,且3bcos A=ccos A+acosC.
(1)求tanA的值;
(2)若a=4 ,求△ABC的面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知向量 ,向量 如圖表示,則(
A.?λ>0,使得
B.?λ>0,使得< , >=60°
C.?λ<0,使得< , >=30°
D.?λ>0,使得 為不為0的常數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= + (1﹣a2)x2﹣ax,其中a∈R.
(1)若曲線(xiàn)y=f(x)在點(diǎn)(1,f(1))處的切線(xiàn)方程為8x+y﹣2=0,求a的值;
(2)當(dāng)a≠0時(shí),求函數(shù)f(x)(x>0)的單調(diào)區(qū)間與極值;
(3)若a=1,存在實(shí)數(shù)m,使得方程f(x)=m恰好有三個(gè)不同的解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= ,關(guān)于x的不等式f2(x)+af(x)>0只有兩個(gè)整數(shù)解,則實(shí)數(shù)a的取值范圍為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=30°,AC=15cm,點(diǎn)O在中線(xiàn)CD上,設(shè)OC=xcm,當(dāng)半徑為3cm的⊙O與△ABC的邊相切時(shí),x=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,建筑物AB后有一座假山,其坡度為i=1:,山坡上E點(diǎn)處有一涼亭,測(cè)得假山坡腳C與建筑物水平距離BC=25米,與涼亭距離CE=20米,某人從建筑物頂端測(cè)得E點(diǎn)的俯角為45°,求建筑物AB的高.(注:坡度i是指坡面的鉛直高度與水平寬度的比)

查看答案和解析>>

同步練習(xí)冊(cè)答案