分析 (1)首先連接OD,由BC是⊙O的切線,可得∠ABC=90°,又由CD=CB,OB=OD,易證得∠ODC=∠ABC=90°,即可證得CD為⊙O的切線;
(2)在Rt△OBF中,∠ABD=30°,OF=1,可求得BD的長,∠BOD的度數(shù),又由S陰影=S扇形OBD-S△BOD,即可求得答案.
解答 (1)證明:連接OD,
∵BC是⊙O的切線,
∴∠ABC=90°,
∵CD=CB,
∴∠CBD=∠CDB,
∵OB=OD,
∴∠OBD=∠ODB,
∴∠ODC=∠ABC=90°,
即OD⊥CD,
∵點D在⊙O上,
∴CD為⊙O的切線;
(2)解:過點O作OF⊥BD于點F,
在Rt△OBF中,
∵∠ABD=30°,OF=1,
∴∠BOF=60°,OB=2,BF=$\sqrt{3}$,
∵OF⊥BD,
∴BD=2BF=2$\sqrt{3}$,∠BOD=2∠BOF=120°,
∴S陰影=S扇形OBD-S△BOD=$\frac{120π×{2}^{2}}{360}$-$\frac{1}{2}$×2$\sqrt{3}$×1=$\frac{4}{3}$π-$\sqrt{3}$.
點評 此題考查了切線的判定與性質(zhì)、垂徑定理以及扇形的面積.此題難度適中,注意掌握輔助線的作法,注意數(shù)形結(jié)合思想的應(yīng)用.
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 900元 | B. | 1000元 | C. | 960元 | D. | 920元 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | (3-a,-b) | B. | (b,3-a) | C. | (a-3,-b) | D. | (b+3,a) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com