【題目】如圖,正方形ABCD中,G是BC中點,DE⊥AG于E,BF⊥AG于F,GN∥DE,M是BC延長線上一點。
(1)求證:△ABF≌△DAE
(2)尺規(guī)作圖:作∠DCM的平分線,交GN于點H(保留作圖痕跡,不寫作法和證明),試證明GH=AG。
【答案】(1)證明見解析;
(2)作圖見解析,證明見解析.
【解析】解:∵ 四邊形ABCD是正方形
∴ AB=BC=CD=DA
∠DAB=∠ABC=90°
∴ ∠DAE+∠GAB=90°
∵ DE⊥AG BF⊥AG
∴ ∠AED=∠BFA=90°
∠DAE +∠ADE=90°
∴ ∠GAB =∠ADE
在△ABF和△DAE中
∴ △ABF≌△DAE
(2)作圖略
方法1:作HI⊥BM于點I
∵ GN∥DE
∴ ∠AGH=∠AED=90°
∴ ∠AGB+∠HGI=90°
∵ HI⊥BM
∴ ∠GHI+∠HGI=90°
∴ ∠AGB =∠GHI
∵ G是BC中點
∴ tan∠AGB=
∴ tan∠GHI= tan∠AGB=
∴ GI=2HI
∵ CH平分∠DCM
∴ ∠HCI=
∴ CI=HI
∴ CI=CG=BG=HI
在△ABG和△GIH中
∴ △ABG≌△GIH
∴ AG=GH
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,曲線AB是頂點為B,與y軸交于點A的拋物線y=﹣x2+4x+2的一部分,曲線BC是雙曲線y=的一部分,由點C開始不斷重復(fù)“A﹣B﹣C”的過程,形成一組波浪線,點P(2018,m)與Q(2025,n)均在該波浪線上,則=___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線經(jīng)過,兩點,與x軸的另一個交點為C,頂點為D,連結(jié)CD.
(1)求該拋物線的表達式;
(2)點P為該拋物線上一動點(與點B、C不重合),設(shè)點P的橫坐標(biāo)為t.
①當(dāng)點P在直線BC的下方運動時,求的面積的最大值;
②該拋物線上是否存在點P,使得若存在,求出所有點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABO的頂點A是雙曲線與直線在第二象限的交點,AB⊥軸于B且S△ABO =.
(1)求這兩個函數(shù)的解析式.
(2)求直線與雙曲線的兩個交點A,C和直線AC與x軸的交點D的坐標(biāo)和△AOC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,山坡上有一棵樹AB,樹底部B點到山腳C點的距離BC為米,山坡的坡角為30°.小寧在山腳的平地F處測量這棵樹的高,點C到測角儀EF的水平距離CF=1米,從E處測得樹頂部A的仰角為45°,樹底部B的仰角為20°,求樹AB的高度.(參考數(shù)值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)科所在相同條件下做某作物種子發(fā)芽率的實驗,結(jié)果如下表所示:
種子個數(shù) | 200 | 300 | 500 | 700 | 800 | 900 | 1000 |
發(fā)芽種子個數(shù) | 187 | 282 | 435 | 624 | 718 | 814 | 901 |
發(fā)芽種子率 | 0.935 | 0.940 | 0.870 | 0.891 | 0.898 | 0.904 | 0.901 |
下面有四個推斷:
①種子個數(shù)是700時,發(fā)芽種子的個數(shù)是624,所以種子發(fā)芽的概率是0.891;
②隨著參加實驗的種子數(shù)量的增加,發(fā)芽種子的頻率在0.9附近擺動,顯示出一定的穩(wěn)定性,可以估計種子發(fā)芽的概率約為0.9(精確到0.1);
③實驗的種子個數(shù)最多的那次實驗得到的發(fā)芽種子的頻率一定是種子發(fā)芽的概率;
④若用頻率估計種子發(fā)芽的概率約為0.9,則可以估計種子中大約有的種子不能發(fā)芽.
其中合理的是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是小明同學(xué)設(shè)計的“過圓外一點作圓的切線”的尺規(guī)作圖的過程.
已知:如圖1,和外的一點.
求作:過點作的切線.
作法:如圖2,
①連接;
②作線段的垂直平分線,直線交于;
③以點為圓心,為半徑作圓,交于點和;
④作直線和.
則,就是所求作的的切線.
根據(jù)上述作圖過程,回答問題:
(1)用直尺和圓規(guī),補全圖2中的圖形;
(2)完成下面的證明:
證明:連接,,
∵由作圖可知是的直徑,
∴(______)(填依據(jù)),
∴,,
又∵和是的半徑,
∴,就是的切線(______)(填依據(jù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,∠B=90°,AB=5cm,BC=7cm.點P從點A開始沿AB邊向點B以1cm/s的速度移動,點Q從點B開始沿BC邊向點C以2cm/s的速度移動.
(1)若P、Q分別從A、B同時出發(fā),那么幾秒后△PBQ的面積等于4cm2?
(2)如果P、Q分別從A、B同時出發(fā),那么幾秒后,PQ的長度等于5cm?
(3)在(1)中,△PBQ的面積能否等于7cm2? 請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線y1=﹣2x經(jīng)過點P(﹣2,a),點P關(guān)于y軸的對稱點P′在反比例函數(shù)y2=(k≠0)的圖象上.
(1)求點P的坐標(biāo);
(2)求反比例函數(shù)的解析式,并直接寫出當(dāng)y2<2時自變量x的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com