已知拋物線y=mx2-(m-5)x-5(m>0)與x軸交于兩點(diǎn)A(x1,0)、B(x2,0)(x1<x2),與y軸交于點(diǎn)C,且AB=6.
(1)求拋物線和直線BC的解析式;
(2)在給定的直角坐標(biāo)系中,畫出拋物線和直線BC;
(3)若⊙P過A、B、C三點(diǎn),求⊙P的半徑;
(4)拋物線上是否存在點(diǎn)M,過點(diǎn)M作MN⊥x軸于點(diǎn)N,使△MBN被直線BC分成面積比為1:3的兩部分?若存在,請(qǐng)求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.
(1)由題意得:x1+x2=
m-5
m
,x1•x2=
-5
m
,x2-x1=6
則(x1+x22-4x1x2=36,(
m-5
m
2+
20
m
=36
解得:m1=1,m2=-
5
7

經(jīng)檢驗(yàn)m=1,
∴拋物線的解析式為:y=x2+4x-5
或:由mx2-(m-5)x-5=0得,x=1或x=-
5
m

∵m>0,
∴1-
-5
m
=6,
∴m=1.
∴拋物線的解析式為y=x2+4x-5
由x2+4x-5=0得x1=-5,x2=1
∴A(-5,0),B(1,0),C(0,-5).
設(shè)直線BC的解析式為y=kx+b,
b=-5
k+b=0

b=-5
k=5

∴直線BC的解析式為y=5x-5;

(2)如圖1;

(3)如圖2,由題意,圓心P在AB的中垂線上,即在拋物線y=x2+4x-5的對(duì)稱軸直線x=-2上,
設(shè)P(-2,-h)(h>0),(6分)
連接PB、PC,則PB2=(1+2)2+h2,PC2=(5-h)2+22,
由PB2=PC2,
即(1+2)2+h2=(5-h)2+22,解得h=2.
∴P(-2,-2),
∴⊙P的半徑PB=
(1+2)2+22
=
13


(4)如圖3,設(shè)MN交直線BC于點(diǎn)E,點(diǎn)M的坐標(biāo)為(t,t2+4t-5),則點(diǎn)E的坐標(biāo)為(t,5t-5).
若S△MEB:S△ENB=1:3,則ME:EN=1:3.
∴EN:MN=3:4,
∴t2+4t-5=
4
3
(5t-5).
解得t1=1(不合題意舍去),t2=
5
3
,
∴M(
5
3
,
40
9
).
若S△MEB:S△ENB=3:1,則ME:EN=3:1.
∴EN:MN=1:4,
∴t2+4t-5=4(5t-5).
解得t3=1(不合題意舍去),t4=15,
∴M(15,280).
∴存在點(diǎn)M,點(diǎn)M的坐標(biāo)為(
5
3
,
40
9
)或(15,280).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,拋物線y=
8
2
5
x2+bx+c經(jīng)過點(diǎn)A(
3
2
,0)和點(diǎn)B(1,2
2
),與x軸的另一個(gè)交點(diǎn)為C.
(1)求拋物線的函數(shù)表達(dá)式;
(2)點(diǎn)D在對(duì)稱軸的右側(cè),x軸上方的拋物線上,且∠BDA=∠DAC,求點(diǎn)D的坐標(biāo);
(3)在(2)的條件下,連接BD,交拋物線對(duì)稱軸于點(diǎn)E,連接AE.
①判斷四邊形OAEB的形狀,并說明理由;
②點(diǎn)F是OB的中點(diǎn),點(diǎn)M是直線BD的一個(gè)動(dòng)點(diǎn),且點(diǎn)M與點(diǎn)B不重合,當(dāng)∠BMF=
1
3
∠MFO時(shí),請(qǐng)直接寫出線段BM的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,點(diǎn)A1、A2、A3、…、An在拋物線y=-x2圖象上,點(diǎn)B0、B1、B2、B3、…、Bn在y軸上(點(diǎn)B0與坐標(biāo)原點(diǎn)O重合),若△A1B0B1、△A2B1B2、…、△AnBn-1Bn都為等腰直角三角形,則A2011B2010的長(zhǎng)為(  )
A.2010B.2011C.2010
2
D.2011
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在直角坐標(biāo)平面中,O為坐標(biāo)原點(diǎn),二次函數(shù)y=x2+bx+c的圖象與y軸的負(fù)半軸相交于點(diǎn)C(如圖),點(diǎn)C的坐標(biāo)為(0,-3),且BO=CO.
(1)求出B點(diǎn)坐標(biāo)和這個(gè)二次函數(shù)的解析式;
(2)求△ABC的面積;
(3)若P是拋物線對(duì)稱軸上一個(gè)動(dòng)點(diǎn),求當(dāng)PA+PC的值最小時(shí)P點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

一條拋物線頂點(diǎn)為(2,4),如果它在x軸上截得的線段長(zhǎng)為4,那么這條拋物線的解析式為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

用12m長(zhǎng)的柵欄圍成一個(gè)中間被隔斷的鴨舍(柵欄占地面積忽略不計(jì)).

(1)如圖1,當(dāng)AB=______m,BC=______m時(shí),所圍成兩間鴨舍的面積最大,最大值為______m2
(2)如圖2,若現(xiàn)有一面長(zhǎng)4m的墻可以利用,其余三方及隔斷使用柵欄,所圍成兩間鴨舍面積和的最大值是多少______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某商店購(gòu)買一批單價(jià)為20元的日用品,如果以單價(jià)30元銷售,那么半月內(nèi)可以售出400件.據(jù)銷售經(jīng)驗(yàn),提高銷售單價(jià)會(huì)導(dǎo)致銷售量的減少,即銷售單價(jià)每提高一元,銷售量相應(yīng)減少20件.如何提高銷售價(jià),才能在半月內(nèi)獲得最大利潤(rùn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在“母親節(jié)”期間,某校部分團(tuán)員參加社會(huì)公益活動(dòng),準(zhǔn)備購(gòu)進(jìn)一批許愿瓶進(jìn)行銷售,并將所得利潤(rùn)捐給慈善機(jī)構(gòu).根據(jù)市場(chǎng)調(diào)查,這種許愿瓶一段時(shí)間內(nèi)的銷售量y(個(gè))與銷售單價(jià)x(元/個(gè))之間的對(duì)應(yīng)關(guān)系如圖所示:
(1)試判斷y與x之間的函數(shù)關(guān)系,并求出函數(shù)關(guān)系式;
(2)若許愿瓶的進(jìn)價(jià)為6元/個(gè),按照上述市場(chǎng)調(diào)查的銷售規(guī)律,求銷售利潤(rùn)w(元)與銷售單價(jià)x(元/個(gè))之間的函數(shù)關(guān)系式;
(3)在(2)的條件下,若許愿瓶的進(jìn)貨成本不超過900元,要想獲得最大利潤(rùn),試確定這種許愿瓶的銷售單價(jià),并求出此時(shí)的最大利潤(rùn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,根據(jù)圖象解答下列問題:
(1)寫出方程ax2+bx+c=0的兩個(gè)根;
(2)當(dāng)x為何值時(shí),y>0;y<0?
(3)寫出y隨x的增大而減小的自變量x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案