【題目】如圖①是一個(gè)長為2m、寬為2n的長方形,沿圖中虛線用剪刀將其均勻分成四個(gè)小長方形,然后按圖②的形狀拼成一個(gè)正方形.

(1)你認(rèn)為圖②中陰影部分的正方形的邊長等于________;

(2)請(qǐng)你用兩種不同的方法表示圖②中陰影部分的面積,方法一:__________________,方法二:________________;

(3)觀察圖②,你能寫出代數(shù)式(m+n)2,(m-n)2,mn之間的關(guān)系嗎?

(4)應(yīng)用:已知m+n=11,mn=28(m>n),求m,n的值.

①  

【答案】(1)m-n;(2)(m-n)2,(m+n)2-4mn;(3)(m-n)2=(m+n)2-4mn(m+n)2=(m-n)2+4mn4mn=(m+n)2-(m-n)2(寫出一個(gè)即可);(4)m=7,n=4.

【解析】

對(duì)于(1),根據(jù)圖形,利用面積將陰影部分的面積表示出來,然后根據(jù)正方形的面積計(jì)算公式計(jì)算出陰影部分的正方形的邊長;

對(duì)于(2),根據(jù)圖形的面積計(jì)算,進(jìn)而得出表示圖②中陰影部分面積的兩種不同的方法;

對(duì)于(3),根據(jù)圖形的面積進(jìn)而得出(mn)2,(mn)2,mn之間的關(guān)系;

對(duì)于(4),由(3)可知(mn)2=(mn)2-4mn,由mn=11、mn=28可得出mn=3,由mn=11進(jìn)而得出m,n的值.

(1)mn 

(2)(mn)2 (mn)2-4mn

(3)(mn)2=(mn)2-4mn(mn)2=(mn)2+4mn4mn=(mn)2-(mn)2(寫出一個(gè)即可).

(4)因?yàn)?/span>(mn)2=(mn)2-4mn=112-4×28=9,

所以mn=3(mn,負(fù)值已舍去),

所以解得

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在△ABC中,∠BAC的平分線與線段BC的垂直平分線PQ相交于點(diǎn)P,過點(diǎn)P分別作PN垂直于AB于點(diǎn)N,PM垂直于AC于點(diǎn)M,BN和CM有什么數(shù)量關(guān)系?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,ABC中,AB=AC,點(diǎn)M、N分別是AB、AC上的點(diǎn),且AM=AN.連接MN、CM、BN,點(diǎn)D、E、F、G分別是BC、MN、BN、CM的中點(diǎn),連接E、F、D、G.

(l)判斷四邊形EFDG的形狀是   (不必證明);

(2)現(xiàn)將AMN繞點(diǎn)A旋轉(zhuǎn)一定的角度,其他條件不變(如圖②),四邊形EFDG的形狀是否發(fā)生變化?證明你的結(jié)論;

(3)如圖②,在(2)的情況下,請(qǐng)將ABC在原有的條件下添加一個(gè)條件,使四邊形EFDG是正方形.請(qǐng)寫出你添加的條件,并在添加條件的基礎(chǔ)上證明四邊形EFDG是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC為等邊三角形,D、E分別是AC、BC上的點(diǎn),且AD=CE,AEBD相交于點(diǎn)P,BFAE于點(diǎn)F.若BP=4,則PF的長(

A. 2 B. 3 C. 1 D. 8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列解題過程:

已知a,b,cABC的三邊長,且滿足a2c2-b2c2=a4-b4,試判斷ABC的形狀.

解:因?yàn)?/span>a2c2-b2c2=a4-b4,

所以c2(a2-b2)=( a2-b2)( a2+b2).

所以c2= a2+b2

所以ABC是直角三角形.

回答下列問題:

(1)上述解題過程,從哪一步開始出現(xiàn)錯(cuò)誤?請(qǐng)寫出該步的代碼為 ;

(2)錯(cuò)誤的原因?yàn)?/span> ;

(3)請(qǐng)你將正確的解答過程寫下來.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,邊AB的垂直平分線與對(duì)角線AC相交于點(diǎn)E,∠ABC=140°,那么∠EDC=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在△ABC中,E,G分別是BC,AC上的點(diǎn),D,F(xiàn)是AB上的點(diǎn),已知EF⊥AB,垂足為F,CD⊥AB,垂足為D,∠1=∠2, 試判斷∠AGD和∠ACB是否相等,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形OACB的頂點(diǎn)O是坐標(biāo)原點(diǎn),頂點(diǎn)A、B分別在x軸、y軸的正半軸上,OA=3,OB=4,D為邊OB的中點(diǎn).若E為邊OA上的一個(gè)動(dòng)點(diǎn),當(dāng)△CDE的周長最小時(shí),則點(diǎn)E的坐標(biāo)____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角梯形ABCD中,AD∥BC,∠C=90°,AD=5,BC=9,以A為中心將腰AB順時(shí)針旋轉(zhuǎn)90°至AE,連接DE,則△ADE的面積等于( 。

A.10
B.11
C.12
D.13

查看答案和解析>>

同步練習(xí)冊(cè)答案