18.如圖,△ABC在方格紙中,設(shè)單元格邊長(zhǎng)為1.
(1)請(qǐng)以點(diǎn)O為位似中心,相似比為2,在方格紙中將△ABC放大,畫(huà)出放大后的圖形△A′B′C′;
(2)直接寫(xiě)出△A′B′C′的面積S.

分析 (1)直接利用位似圖形的性質(zhì)得出對(duì)應(yīng)點(diǎn)位置進(jìn)而得出答案;
(2)直接利用三角形面積求法,進(jìn)而得出答案.

解答 解:(1)如圖所示:△A′B′C′即為所求;


(2)△A′B′C′的面積S=$\frac{1}{2}$×8×4=16.

點(diǎn)評(píng) 此題主要考查了位似變換以及三角形面積求法,正確得出對(duì)應(yīng)點(diǎn)位置是解題關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖所示,已知∠α和∠β,利用尺規(guī)作∠BOD=∠α+∠β.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

9.(1)求x的值:4x2-9=0;
(2)計(jì)算:(-1)0+$\root{3}{8}$+$\sqrt{({-2)}^{2}}$;
(3)已知:(x+5)3=-27,求x.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

6.如圖,已知AO=DO,∠OBC=∠OCB.求證:∠1=∠2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖,在平面直角坐標(biāo)系xOy中,將拋物線y=x2的對(duì)稱軸繞著點(diǎn)P(0,2)順時(shí)針旋轉(zhuǎn)45°后與該拋物線交于A、B兩點(diǎn),
(1)求直線AB的函數(shù)表達(dá)式;
(2)若點(diǎn)Q在是該拋物線上直線AB的下方的一點(diǎn),作QE∥y軸交AB于E,求EQ的最大值;
(3)點(diǎn)M是y軸上的點(diǎn),且△ABM為直角三角形,直接寫(xiě)出所有符合條件的點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

3.探究函數(shù)y=x+$\frac{4}{x}$的圖象與性質(zhì)
(1)函數(shù)y=x+$\frac{4}{x}$的自變量x的取值范圍是x≠0;
(2)下列四個(gè)函數(shù)圖象中,函數(shù)y=x+$\frac{4}{x}$的圖象大致是C;

(3)對(duì)于函數(shù)y=x+$\frac{4}{x}$,求當(dāng)x>0時(shí),y的取值范圍.
請(qǐng)將下面求解此問(wèn)題的過(guò)程補(bǔ)充完整:
解:∵x>0
∴y=x+$\frac{4}{x}$
=($\sqrt{x}$)2+($\frac{2}{\sqrt{x}}$)2
=($\sqrt{x}$-$\frac{2}{\sqrt{x}}$)2+2.
∵($\sqrt{x}$-$\frac{2}{\sqrt{x}}$)2≥0,
∴y≥2.
【拓展應(yīng)用】
(4)若函數(shù)y=$\frac{{x}^{2}+5x+4}{x}$,則y的取值范圍是y≥7.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖,已知A、B、C三點(diǎn)共線,OC、OE分別平分∠AOD、∠DOB.
(1)試探究∠COD和∠DOE的關(guān)系;
(2)若∠DOE:∠COD=2:3,求∠COB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

7.一只不透明的布袋里裝有4個(gè)大小、質(zhì)地均相同的乒乓球,每個(gè)球上面分別標(biāo)有1、2、3、4.小林先從布袋中隨機(jī)抽取一個(gè)乒乓球(不放回),再?gòu)氖O碌?個(gè)球中隨機(jī)抽取第二個(gè)乒乓球.記兩次取得乒乓球上的數(shù)字依次為a、b
(1)求a、b之積為奇數(shù)的概率.
(2)若c=5,求長(zhǎng)為a、b、c的三條線段能?chē)扇切蔚母怕剩?/div>

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

8.設(shè)x1、x2是一元二次方程方程2x2-7x+5=0的兩根,利用一元二次方程根與系數(shù)的關(guān)系,求下列各式的值.
(1)x12x2+x1x22
(2)(x1-x22

查看答案和解析>>

同步練習(xí)冊(cè)答案