如圖,已知拋物線y=2x2﹣2與x軸交于A,B兩點(點A在點B的左側(cè)),與y軸交于點C.

(1)寫出以A,B,C為頂點的三角形面積;
(2)過點E(0,6)且與x軸平行的直線l1與拋物線相交于M、N兩點(點M在點N的左側(cè)),以MN為一邊,拋物線上的任一點P為另一頂點做平行四邊形,當(dāng)平行四邊形的面積為8時,求出點P的坐標(biāo);
(3)過點D(m,0)(其中m>1)且與x軸垂直的直線l2上有一點Q(點Q在第一象限),使得以Q,D,B為頂點的三角形和以B,C,O為頂點的三角形相似,求線段QD的長(用含m的代數(shù)式表示).
(1)2;(2)(,8)或(,8)或(,4)或(,4);(3)2m-2或

試題分析:(1)在二次函數(shù)的解析式中,令y=0,求出x=±1,得到AB=2,令x=0時,求出y=-2,得到OC=2,然后根據(jù)三角形的面積公式即可求出△ABC的面積;
(2)先將y=6代入,求出x=±2,得到點M與點N的坐標(biāo),則MN=4,再由平行四邊形的面積公式得到MN邊上的高為2,則P點縱坐標(biāo)為8或4.分兩種情況討論:①當(dāng)P點縱坐標(biāo)為8時,將y=8代入,求出x的值,得到點P的坐標(biāo);②當(dāng)P點縱坐標(biāo)為4時,將y=4代入,求出x的值,得到點P的坐標(biāo);
(3)由于∠QDB=∠BOC=90°,所以以Q,D,B為頂點的三角形和以B,C,O為頂點的三角形相似時,分兩種情況討論:①OB與BD邊是對應(yīng)邊,②OB與QD邊是對應(yīng)邊兩種情況,根據(jù)相似三角形對應(yīng)邊成比例列式計算求出QD的長度即可.
試題解析:(1)∵,
∴當(dāng)y=0時,2x2-2=0,x=±1,
∴點A的坐標(biāo)為(-1,0),點B的坐標(biāo)為(1,0),AB=2,
又當(dāng)x=0時,y=-2,
∴點C的坐標(biāo)為(0,-2),OC=2,
AB•OC×2×2=2;
(2)將y=6代入,
,解得x=±2,
∴點M的坐標(biāo)為(-2,6),點N的坐標(biāo)為(2,6),MN=4.
∵平行四邊形的面積為8,
∴MN邊上的高為:8÷4=2,
∴P點縱坐標(biāo)為6±2.
①當(dāng)P點縱坐標(biāo)為6+2=8時,,解得
∴點P的坐標(biāo)為(,8)或(,8);
②當(dāng)P點縱坐標(biāo)為6-2=4時,,解得,
∴點P的坐標(biāo)為(,4)或(,4);
(3)∵點B的坐標(biāo)為(1,0),點C的坐標(biāo)為(0,-2),
∴OB=1,OC=2.
∵∠QDB=∠BOC=90°,
∴以Q,D,B為頂點的三角形和以B,C,O為頂點的三角形相似時,分兩種情況:

①OB與BD邊是對應(yīng)邊時,△OBC∽△DBQ,
,即,解得DQ=2(m-1)=2m-2,
②OB與QD邊是對應(yīng)邊時,△OBC∽△DQB,
,即,解得
綜上所述,線段QD的長為2m-2或
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y=x2+bx+c經(jīng)過(2,-1)和(4,3)兩點.
(1)求出這個拋物線的解析式;
(2)將該拋物線向右平移1個單位,再向下平移3個單位,得到的新拋物線解析式為             .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

一場籃球賽中,小明跳起投籃,已知球出手時離地面高米,與籃圈中心的水平距離為8米,當(dāng)球出手后水平距離為4米時到達(dá)最大高度4米,若籃球運行的軌跡為拋物線,籃圈中心距離地面3米.

(1)建立如圖的平面直角坐標(biāo)系,求拋物線的解析式;
(2)問此球能否投中?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線).
(1)求拋物線與軸的交點坐標(biāo);
(2)若拋物線與軸的兩個交點之間的距離為2,求的值;
(3)若一次函數(shù)的圖象與拋物線始終只有一個公共點,求一次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

矩形OABC在平面直角坐標(biāo)系中的位置如圖所示,A、C兩點的坐標(biāo)分別為A(6,0)、C(0,3),直線與BC邊相交于點D.

(1)求點D的坐標(biāo);
(2)若拋物線經(jīng)過A、D兩點,試確定此拋物線的解析式;
(3)設(shè)(2)中的拋物線的對稱軸與直線AD交于點M,點P為對稱軸上一動點,以P、A、M為頂點的三角形與△ABD相似,求符合條件的所有點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,將拋物線C1:y=x2+3先向右平移1個單位,再向下平移7個單位得到拋物線C2。C2的圖象與x軸交于A、B兩點(點A在點B的左側(cè))。

(1)求拋物線C2的解析式;
(2)若拋物線C2的對稱軸與x軸交于點C,與拋物線C2交于點D,與拋物線C1交于點E,連結(jié)AD、DB、BE、EA,請證明四邊形ADBE是菱形,并計算它的面積;
(3)若點F為對稱軸DE上任意一點,在拋物線C2上是否存在這樣的點G,使以O(shè)、B、F、G四點為頂點的四邊形是平行四邊形,如果存在,請求出點G的坐標(biāo),如果不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線y=2(x﹣3)2+1的頂點坐標(biāo)是(  )
A.(3,1)B.(3,﹣1)C.(﹣3,1)D.(﹣3,﹣1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

將拋物線y=3x2的圖象先向上平移3個單位,再向右平移4個單位所得的解析式為(     )
A.B.
C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在平面直角坐標(biāo)系中,點A是拋物線與y軸的交點,點B是這條拋物線上的另一點,且AB∥x軸,則以AB為邊的等邊三角形ABC的周長為          .

查看答案和解析>>

同步練習(xí)冊答案