【題目】北山水果市場是我區(qū)最大的水果批發(fā)市場,張老師想購買甲、乙、丙三種水果,如果購買甲2千克,乙1千克,丙4千克,共需付錢36元:如果購買甲4千克,乙2千克,丙2千克,共需付錢32元.今要購買甲4千克,乙2千克,丙5千克,則共應付_____元.

【答案】52

【解析】

設甲水果的單價為x元,乙水果的單價為y元,丙水果的單價為z元,根據(jù)題意,即可得出關于x,y,z的三元一次方程組,設2x+y=m,將原方程組變形為二元一次方程組,解之即可得出mz的值,再將其代入4x+2y+5z=2m+2z+3z即可求出結論.

解:設甲水果的單價為x元,乙水果的單價為y元,丙水果的單價為z元,

依題意,得:

2x+ym,則原方程組變形為

解得:,

∴4x+2y+5z2m+2z+3z32+3×52

故答案為:52

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC看,∠BAC=90°,AC=12,AB=10,DAC上一個動點,以AD為直徑的⊙O交BDE,則線段CE的最小值是(

A. 5 B. 6 C. 7 D. 8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】RtABC中,ACB=90°,tanBAC=. D在邊AC上(不與A,C重合),連結BDFBD中點.

1)若過點DDEABE,連結CF、EF、CE,如圖1.設,則k= ;

2)若將圖1中的ADE繞點A旋轉,使得D、E、B三點共線,點F仍為BD中點,如圖2所示.求證:BE-DE=2CF;

3)若BC=6,點D在邊AC的三等分點處,將線段AD繞點A旋轉,點F始終為BD中點,求線段CF長度的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a≠0)的圖象過點C(0,1),頂點為Q(2,3),點D在x軸正半軸上,且OD=OC.

(1)求直線CD的解析式;

(2)求拋物線的解析式;

(3)將直線CD繞點C逆時針方向旋轉45°所得直線與拋物線相交于另一點E,求證:CEQ∽△CDO;

(4)在(3)的條件下,若點P是線段QE上的動點,點F是線段OD上的動點,問:在P點和F點移動過程中,PCF的周長是否存在最小值?若存在,求出這個最小值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,有一塊直角三角板,其中,,,ABx軸上,點A的坐標為,圓M的半徑為,圓心M的坐標為,圓M以每秒1個單位長度的速度沿x軸向右做平移運動,運動時間為t秒;

求點C的坐標;

當點M的內部且與直線BC相切時,求t的值;

如圖2,點E、F分別是BC、AC的中點,連接EM、FM,在運動過程中,是否存在某一時刻,使?若存在,直接寫出t的值,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列材料:

將一個多位自然數(shù)分解為個位與個位之前的數(shù),讓個位之前的數(shù)減去個位數(shù)的兩倍,若所得之差能被7整除,則原多位自然數(shù)一定能被7整除.也稱這個數(shù)為要塞數(shù).例如:將數(shù)1078分解為8107,1078×291,因為91能被7整除,所以1078能被7整除,就稱1078要塞數(shù)

完成下列問題:

1)若一個三位自然數(shù)是要塞數(shù),且個位數(shù)字和百位數(shù)字都是7,則這個三位自然數(shù)位   ;

2)若一個四位自然數(shù)M要塞數(shù),設M的個位數(shù)字為x,十位數(shù)字為y,且個位數(shù)字與百位數(shù)字的和為13,十位數(shù)字與千位數(shù)字的和也為13,記FM)=|xy|,求FM)的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是拋物線型拱橋,當拱頂離水面2m時,水面寬4m.水面下降2.5m,水面寬度增加_____m

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)yax2+bx+ca0)的圖象如圖所示,有下列結論:b24ac0;abc0;a+c0④9a+3b+c0.其中,正確的結論有(  )

A.4B.3C.2D.1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)yaxh2+ka0)的圖象是拋物線,定義一種變換,先作這條拋物線關于原點對稱的拋物線y′,再將得到的對稱拋物線y′向上平移mm0)個單位,得到新的拋物線ym,我們稱ym叫做二次函數(shù)yaxh2+ka0)的m階變換.

1)已知:二次函數(shù)y2x+22+1,它的頂點關于原點的對稱點為   ,這個拋物線的2階變換的表達式為   

2)若二次函數(shù)M6階變換的關系式為y6′=(x12+5

二次函數(shù)M的函數(shù)表達式為   

若二次函數(shù)M的頂點為點A,與x軸相交的兩個交點中左側交點為點B,在拋物線y6′=(x12+5上是否存在點P,使點P與直線AB的距離最短,若存在,求出此時點P的坐標.

3)拋物線y=﹣3x26x+1的頂點為點A,與y軸交于點B,該拋物線的m階變換的頂點為點C.若△ABC是以AB為腰的等腰三角形,請直按寫出m的值.

查看答案和解析>>

同步練習冊答案