【題目】在平面直角坐標系xOy中,對于P(m,n),若點Q的坐標為(m,|m-n|),則稱點Q為點P的關聯(lián)點.
(1)請直接寫出點(2,2)的關聯(lián)點;
(2)如果點P在一次函數(shù)y=x-1的圖像上,其“關聯(lián)點”Q與點P重合,求點P的坐標;
(3)已知點P在一次函數(shù)y=x(x>0)和一次函數(shù)y=x(x>0)所圍成的區(qū)域內(nèi),且點P的“關聯(lián)點”Q在二次函數(shù)的圖像上,求線段PQ的最大值及此時點P的坐標.
【答案】(1)(2;0);(2)(2;1) ;(3)PQ的最大值為,此時P(,)
【解析】試題分析:(1)直接根據(jù)關聯(lián)點的定義可求得答案;(2)設P(x,x-1),由關聯(lián)點的定義表示出Q點的坐標,由Q與P重合可求得P點的坐標;(3)設點P的坐標為(a,b),由題意可知:a>0,b>0且a>b,2b>a,然后得到點Q的坐標為(a,a-b),再列出PQ與a的函數(shù)關系式,最后利用配方法可求得PQ的最大值,以及點P的坐標.
試題解析:(1)點(2,2)的關聯(lián)點的坐標為(2,|22|),即(2,0).
(2)設P(x,x1),則點P的關聯(lián)點的坐標為(x,1).
∵點P的“關聯(lián)點”Q與點P重合,
∴x1=1,解得x=2.
∴點P的坐標為(2,1).
(3)設點P的坐標為(a,b).
∵點P在一次函數(shù)y=x(x>0)和一次函數(shù)y=x(x>0)所圍成的區(qū)域內(nèi),
∴a>0,b>0且a>b,2b>a.
∴點P的“關聯(lián)點”Q的坐標為(a,ab).
∵點Q在二次函數(shù)y=x2的圖象上,
∴ab=a2,整理得b=aa2.
∵PQ=b(ab)=2ba,
∴PQ=2(aa2)a=2a2+a=2(a)2+.
∴當a=時,PQ有最大值,最大值為.
把a=代入b=aa2得b=.
∴點P的坐標為(,6).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)的圖象與x軸相交于A(﹣3,0)、B(1,0)兩點,與y軸相交于點C(0,3),點C、D是二次函數(shù)圖象上的一對對稱點,一次函數(shù)的圖象過點B、D.
(1)求D點坐標;
(2)求二次函數(shù)的解析式;
(3)根據(jù)圖象直接寫出使一次函數(shù)值小于二次函數(shù)值的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△AOB是直角三角形,∠AOB=90°,OB=2OA,點A在反比例函數(shù)y=的圖象上.若點B在反比例函數(shù)y=的圖象上,則k的值為( )
A.-4 B.4 C.-2 D.2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知在平面直角坐標系中,點A、B、C、D的坐標依次為(﹣1,0),(m,n),(﹣1,10),(﹣9,p),且p≤n.若以A、B、C、D四個點為頂點的四邊形是菱形,則n的值是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】教師辦公室有一種可以自動加熱的飲水機,該飲水機的工作程序是:放滿水后,接通電源,則自動開始加熱,每分鐘水溫上升10 ℃,待加熱到100 ℃,飲水機自動停止加熱,水溫開始下降,水溫y(℃)和通電時間x(min)成反比例函數(shù)關系,直至水溫降至室溫,飲水機再次自動加熱,重復上述過程.設某天水溫和室溫均為20 ℃,接通電源后,水溫y(℃)和通電時間x(min)之間的關系如圖所示,回答下列問題:
(1)分別求出當0≤x≤8和8<x≤a時,y和x之間的函數(shù)關系式;
(2)求出圖中a的值;
(3)李老師這天早上7:30將飲水機電源打開,若他想在8:10上課前喝到不低于40 ℃的開水,則他需要在什么時間段內(nèi)接水?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對于反比例函數(shù)y= ,下列說法正確的是( )
A.圖象經(jīng)過(1,﹣1)
B.圖象位于二、四象限
C.圖象是中心對稱圖形
D.y隨x的增大而減小
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某服裝廠生產(chǎn)一種夾克和T恤,夾克每件定價100元,T恤每件定價60元,廠方在開展促銷活動期間,向客戶提供兩種優(yōu)惠方案:①買一件夾克送一件T恤 ②夾克和T恤都按定價的8折付款.
現(xiàn)某客戶要到該服裝廠購買夾克30件,T恤x件(x>30).
(1)若按方案①購買夾克和T恤共需 元(用含x的式子表示),若按方案②購買夾克和T恤共需 元(用含x的式子表示)
(2)若x=40,通過計算說明按方案①,②,哪種方案購買較為合算?
(3)當購買多少件T恤時,按以上兩種方案購買所付價錢一樣多?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】同時點燃甲乙兩根蠟燭,蠟燭燃燒剩下的長度y(cm)與燃燒時間x(min)的關系如圖所示.
(1)求乙蠟燭剩下的長度y與燃燒時間x的函數(shù)表達式;
(2)求點P的坐標,并說明其實際意義;
(3)求點燃多長時間,甲蠟燭剩下長度是乙蠟燭剩下長度的1.1倍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com