【題目】如圖,直線相交于點C,分別交x軸于點A和點BP為射線BC上的一點。

1)如圖1,點D是直線CB上一動點,連接OD,將沿OD翻折,點C的對應(yīng)點為,連接,并取的中點F,連接PF,當(dāng)四邊形AOCP的面積等于時,求PF的最大值;

2)如圖2,將直線AC繞點O順時針方向旋轉(zhuǎn)α,分別與x軸和直線BC相交于點S和點R,當(dāng)是等腰三角形時,直接寫出α的度數(shù).

【答案】1PF的最大值是;(2的度數(shù):,,.

【解析】

1)設(shè)Pm-m+6),連接OP.根據(jù)S四邊形AOCP=SAOP+SOCP=,構(gòu)建方程求出點P坐標(biāo),取OB的中點Q,連接QF,QP,求出FQPQ,根據(jù)PF≤PQ+QF求解即可.

2)分四種情形:①如圖2-1中,當(dāng)RS=RB時,作OMACM.②如圖2-2中,當(dāng)BS=BR時,③如圖2-3中,當(dāng)SR=SB時,④如圖2-4中,當(dāng)BR=BS時,分別求解即可解決問題.

解:(1)在中,當(dāng)時,;

當(dāng)時,

,

設(shè),連接OP

OB的中點Q,連接FQ,PQ

中,當(dāng)時,

又∵點F的中點,

所以PF的最大值是

2)①如圖2-1中,當(dāng)RS=RB時,作OMACM

tanOAC==

∴∠OAC=60°,

OC=OB=6

∴∠OBC=OCB=45°,

∵∠OM′S=BRS=90°

OM′BR,

∴∠AOM′=OBC=45°,

∵∠AOM=30°

α=45°-30°=15°

②如圖2-2中,當(dāng)BS=BR時,易知∠BSR=22.5°,

∴∠SOM′=90°-22.5°=67.5°,

α=MOM′=180°-30°-67.5°=82.5°

③如圖2-3中,當(dāng)SR=SB時,α=180°-30°=150°

④如圖2-4中,當(dāng)BR=BS時,α=150°+90°-67.5°=172.5°

綜上所述,滿足條件的α的值為15°82.5°150°172.5°

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC,AB=AC=6,BAC=108°,D在邊BC,BAD=36°.

(1)求證:BAD∽△BCA;

(2)AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地下車庫出口處安裝了“兩段式欄桿”,如圖1所示,點A是欄桿轉(zhuǎn)動的支點,點E是欄桿兩段的聯(lián)結(jié)點當(dāng)車輛經(jīng)過時,欄桿AEF最多只能升起到如圖2所示的位置,其示意圖如圖3所示欄桿寬度忽略不計,其中米,那么適合該地下車庫的車輛限高標(biāo)志牌為

(參考數(shù)據(jù):

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:若線段上的一個點把這條線段分成12的兩條線段,則稱這個點是這條線段的三等分點.如圖1,點C在線段AB上,且ACCB12,則點C是線段AB的一個三等分點,顯然,一條線段的三等分點有兩個.

1)已知:如圖2,DE15cm,點PDE的三等分點,求DP的長.

2)已知,線段AB15cm,如圖3,點P從點A出發(fā)以每秒1cm的速度在射線AB上向點B方向運(yùn)動;點Q從點B出發(fā),先向點A方向運(yùn)動,當(dāng)與點P重合后立馬改變方向與點P同向而行且速度始終為每秒2cm,設(shè)運(yùn)動時間為t秒.

若點PQ同時出發(fā),且當(dāng)點P與點Q重合時,求t的值.

若點PQ同時出發(fā),且當(dāng)點P是線段AQ的三等分點時,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】八年級(1)班張山同學(xué)利用所學(xué)函數(shù)知識,對函數(shù)進(jìn)行了如下研究:

列表如下:

x

0

1

2

3

y

7

5

3

m

1

n

1

1

1

描點并連線(如下圖)

(1)自變量x的取值范圍是________;

2)表格中:________________;

3)在給出的坐標(biāo)系中畫出函數(shù)的圖象;

4)一次函數(shù)的圖象與函數(shù)的圖象交點的坐標(biāo)為_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】由于(﹣1n,所以我們通常把(﹣1n稱為符號系數(shù).

1)觀察下列單項式:﹣,…按此規(guī)律,第5個單項式是   ,第n個單項式是   

2的值為   ;

3)你根據(jù)(2)寫出一個當(dāng)n為偶數(shù)時值為2,當(dāng)n為奇數(shù)時值為0的式子   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點M(﹣3,m)是一次函數(shù)y=x+1與反比例函數(shù)y=(k≠0)的圖象的一個交點.

(1)求反比例函數(shù)表達(dá)式;

(2)點P是x軸正半軸上的一個動點,設(shè)OP=a(a2),過點P作垂直于x軸的直線,分別交一次函數(shù),反比例函數(shù)的圖象于點A,B,過OP的中點Q作x軸的垂線,交反比例函數(shù)的圖象于點C,ABC′與ABC關(guān)于直線AB對稱.

當(dāng)a=4時,求ABC′的面積;

當(dāng)a的值為   時,AMC與AMC′的面積相等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校計劃購買籃球、排球共20個,購買2個籃球,3個排球,共需花費(fèi)190元;購買3個籃球的費(fèi)用與購買5個排球的費(fèi)用相同。

(1)籃球和排球的單價各是多少元?

(2)若購買籃球不少于8個,所需費(fèi)用總額不超過800元.請你求出滿足要求的所有購買方案,并直接寫出其中最省錢的購買方案

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)在全校學(xué)生中開展了地球我們的家園為主題的環(huán)保征文比賽,評選出一、二、三等獎和優(yōu)秀獎。根據(jù)獎項的情況繪制成如圖所示的兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息解答下列問題:

(1)求校獲獎的總?cè)藬?shù),并把條形統(tǒng)計圖補(bǔ)充完整;

(2)求在扇形統(tǒng)計圖中表示“二等獎” 的扇形的圓心角的度數(shù);

(3)獲得一等獎的4名學(xué)生中有3男1女,現(xiàn)打算從中隨機(jī)選出2名學(xué)生參加頒獎活動,請用列表或畫樹狀圖的方法求選出的2名學(xué)生恰好是1男1女的概率﹒

查看答案和解析>>

同步練習(xí)冊答案