【題目】如圖,在△ABC中,∠ACB=90°,AC=15,BC=9,點P是線段AC上的一個動點,連接BP,將線段BP繞點P逆時針旋轉(zhuǎn)90°得到線段PD,連接AD,則線段AD的最小值是______.
【答案】3
【解析】
如圖,過點D作DE⊥AC于E,有旋轉(zhuǎn)的性質(zhì)可得DP=BP,∠DPB=90°,由“AAS”可證△DEP≌△PCB,可得DE=CP,EP=BC=9,可求AE+DE=6,由勾股定理和二次函數(shù)的性質(zhì)可求解.
如圖,過點D作DE⊥AC于E,
∵將線段BP繞點P逆時針旋轉(zhuǎn)90°得到線段PD,
∴DP=BP,∠DPB=90°,
∴∠DPE+∠BPC=90°,且∠BPC+∠PBC=90°,
∴∠DPE=∠PBC,且DP=BP,∠DEP=∠C=90°,
∴△DEP≌△PCB(AAS)
∴DE=CP,EP=BC=9,
∵AE+PC=AC-EP=6
∴AE+DE=6,
∵AD2=AE2+DE2,
∴AD2=AE2+(6-AE)2,
∴AD2=2(AE-3)2+18,
當(dāng)AE=3時,AD有最小值為3,
故答案為3.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ACB與△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,點D為AB邊上的一點,
(1)求證:△ACE≌△BCD;
(2)若DE=13,BD=12,求線段AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】高高的路燈掛在路邊的上方,高傲而明亮,小明拿著一根2米長的竹竿,想量一量路燈的高度,直接量是不可能的.于是,他走到路燈旁的一個地方,豎起竹竿(即AE),這時,他量了一下竹竿的影長(AC)正好是1米,他沿著影子的方向走,向遠處走出兩根竹竿的長度(即AB=4米),他又豎起竹竿,這時竹竿的影長正好是一根竹竿的長度(即BD=2米).此時,小明抬頭瞧瞧路燈,若有所思地說:“噢,我知道路燈有多高了!”同學(xué)們,請你和小明一起解答這個問題:
(1)在圖中作出路燈O的位置,并作OP⊥l于P.
(2)求出路燈O的高度,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知一次函數(shù)y=﹣x+b的圖象過點A(0,3),點p是該直線上的一個動點,過點P分別作PM垂直x軸于點M,PN垂直y軸于點N,在四邊形PMON上分別截取:PC=MP,MB=OM,OE=ON,ND=NP.
(1)b= ;
(2)求證:四邊形BCDE是平行四邊形;
(3)在直線y=﹣x+b上是否存在這樣的點P,使四邊形BCDE為正方形?若存在,請求出所有符合的點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線l1:y=x+6與y軸交于點B,直線l2:y=kx+6與x軸交于點A,且直線l1與直線l2相交所形成的角中,其中一個角的度數(shù)是75°,則線段AB的長為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)開展“數(shù)學(xué)史”知識競賽活動,八年級(1)、(2)班根據(jù)初賽成績,各選出5名選手參加復(fù)賽,兩個班各選出的5名選手的復(fù)賽成績(滿分為100分)如圖所示.
(1)請計算八(1)班、八(2)班兩個班選出的5名選手復(fù)賽的平均成績;
(2)請判斷哪個班選出的5名選手的復(fù)賽成績比較穩(wěn)定,并說明理由?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系內(nèi),點O為坐標(biāo)原點,經(jīng)過A(-2,6)的直線交x軸正半軸于點B,交y軸于點C,OB=OC,直線AD交x軸負半軸于點D,若△ABD的面積為27.
(1)求直線AD的解析式;
(2)橫坐標(biāo)為m的點P在AB上(不與點A,B重合),過點P作x軸的平行線交AD于點E,設(shè)PE的長為y(y≠0),求y與m之間的函數(shù)關(guān)系式并直接寫出相應(yīng)的m的取值范圍;
(3)在(2)的條件下,在x軸上是否存在點F,使△PEF為等腰直角三角形?若存在求出點F的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀與應(yīng)用:
閱讀1:a、b為實數(shù),且a>0,b>0,因為,所以,從而(當(dāng)a=b時取等號).
閱讀2:函數(shù)(常數(shù)m>0,x>0),由閱讀1結(jié)論可知: ,所以當(dāng)即時,函數(shù)的最小值為.
閱讀理解上述內(nèi)容,解答下列問題:
問題1:已知一個矩形的面積為4,其中一邊長為x,則另一邊長為,周長為,求當(dāng)x=__________時,周長的最小值為__________.
問題2:已知函數(shù)y1=x+1(x>-1)與函數(shù)y2=x2+2x+17(x>-1),當(dāng)x=__________時, 的最小值為__________.
問題3:某民辦學(xué)習(xí)每天的支出總費用包含以下三個部分:一是教職工工資6400元;二是學(xué)生生活費每人10元;三是其他費用.其中,其他費用與學(xué)生人數(shù)的平方成正比,比例系數(shù)為0.01.當(dāng)學(xué)校學(xué)生人數(shù)為多少時,該校每天生均投入最低?最低費用是多少元?(生均投入=支出總費用÷學(xué)生人數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的頂點A、B的坐標(biāo)分別為(-4,0)和(2,0),BC=.設(shè)直線AC與直線x=4交于點E.
(1)求以直線x=4為對稱軸,且過C與原點O的拋物線的函數(shù)關(guān)系式,并說明此拋物線一定過點E;
(2)設(shè)(1)中的拋物線與x軸的另一個交點為N,M是該拋物線上位于C、N之間的一動點,求△CMN面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com