精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在ABC中,AB=AC,以AB為直徑的圓交AC于點D,交BC于點E,延長AE至點F,使EF=AE,連接FB,F(xiàn)C.

(1)求證:四邊形ABFC是菱形;

(2)若AD=7,BE=2,求半圓和菱形ABFC的面積.

【答案】(1)證明見解析;(2)

【解析】(1)根據對角線相互平分的四邊形是平行四邊形,證明是平行四邊形,再根據鄰邊相等的平行四邊形是菱形即可證明;

(2)設CD=x,連接BD.利用勾股定理構建方程即可解決問題.

(1)證明:∵AB是直徑,

∴∠AEB=90°,

AEBC,

AB=AC,

BE=CE,

AE=EF,

∴四邊形ABFC是平行四邊形,

AC=AB,

∴四邊形ABFC是菱形.

(2)設CD=x.連接BD.

AB是直徑,

∴∠ADB=BDC=90°,

AB2﹣AD2=CB2﹣CD2,

(7+x)2﹣72=42﹣x2,

解得x=1或﹣8(舍棄)

AC=8,BD==,

S菱形ABFC=8

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,已知:∠AOB90°,OC平分∠AOB,點P在射線OC上.點E在射線OA上,點F在射線OB上,且∠EPF90°.

1)如圖1,求證:PEPF;

2)如圖2,作點F關于直線EP的對稱點F′,過F′點作FHOFH,連接EF′,FHEP交于點M.連接FM,圖中與∠EFM相等的角共有   個.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,∠A=36°,AB=AC,CD是△ACB的角平分線.若在邊AC上截取CE=CB,連接DE,則圖中等腰三角形共有( 。

A. 2B. 3C. 4D. 5

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,將矩形ABCD(紙片)折疊,使點BAD邊上的點K重合,EG為折痕;點CAD邊上的點K重合,FH為折痕.已知∠1=67.5°,2=75°,EF=+1,求BC的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在四邊形ABCD中,E,FG,H分別是AB,BD,CDAC的中點,要使四邊形EFGH是菱形,則四邊形ABCD只需要滿足一個條件是( )

A. ADBC

B. ACBD

C. ABCD

D. ADCD

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在矩形ABCD中,AB=12,P是邊AB上一點,把PBC沿直線PC折疊,頂點B的對應點是點G,過點BBECG,垂足為E且在AD上,BEPC于點F.

(1)如圖1,若點EAD的中點,求證:AEB≌△DEC;

(2)如圖2,①求證:BP=BF;

②當AD=25,且AE<DE時,求cosPCB的值;

③當BP=9時,求BEEF的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在RtABC中,∠C90°ACBC10cm,點P從點B出發(fā),沿BA方向以每秒cm的速度向終點A運動;同時,動點Q從點C出發(fā)沿CB方向以每秒1 cm的速度向終點B運動,將BPQ沿BC翻折,點P的對應點為點P′,設Q點運動的時間為t秒,當四邊形QPBP′為菱形時,t的值為____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】ABC,BAC=60°,AB=AC,D為直線BC上一動點(點D不與B,C重合)AD為邊在AD右側作菱形ADEF,使∠DAF=60°,連接CF

1)觀察猜想如圖1,當點D在線段BC上時,ABCF的位置關系為   

BC,CD,CF之間的數量關系為   

2)數學思考如圖2當點D在線段CB的延長線上時,結論①,②是否仍然成立?若成立請給予證明;若不成立,請你寫出正確結論再給予證明.

3)拓展延伸如圖3,當點D在線段BC的延長線上時ADCF相交于點G,若已知AB=4,CD=AB,AG的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】城區(qū)某新建住宅小區(qū)計劃購買并種植甲、乙兩種樹苗共300株.已知甲種樹苗每株60元,乙種樹苗每株90元.

1)若購買樹苗共用21000元,問甲、乙兩種樹苗應各買多少株?

2)據統(tǒng)計,甲、乙兩種樹苗每株樹苗對空氣的凈化指數分別為,問如何購買甲、乙兩種樹苗才能保證該小區(qū)的空氣凈化指數之和等于90?

查看答案和解析>>

同步練習冊答案