【題目】邊長(zhǎng)為10、10、12的三角形的外接圓半徑為R,內(nèi)切圓半徑為r,則R+r=_____.
【答案】.
【解析】
根據(jù)等腰三角形的性質(zhì)得出內(nèi)心和外心都在底邊的高AD上,根據(jù)勾股定理得出方程,即可求出外接圓的半徑,根據(jù)三角形的面積公式即可求出內(nèi)切圓的半徑.
解:如圖1,
∵在△ABC中,AB=AC=10,BC=12,
∴過A作AD⊥BC于D,則外接圓的圓心O在AD上,連接OB、OC,
∴BD=CD=BC=6,
∴AD==8,
∵OB2=OD2+BD2,
∴R2=(8﹣R)2+36
∴R=
如圖2
過A作AD⊥BC于D,
∵△ABC中,AB=AC,
∴△ABC的內(nèi)心I在AD上,過I作IE⊥AC于E,IF⊥AB于F,連接OA、OB、OC,
則IF=IE=ID=r,
∵S△ABC=S△BIC+S△AIC+S△ABI,
∴×12×8=×12×r+×10×r+×10×r
∴r=3
∴R+r=+3=
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,已知拋物線的頂點(diǎn)為點(diǎn)P,與y軸交于點(diǎn)B.點(diǎn)A坐標(biāo)為(3,2).點(diǎn)M為拋物線上一動(dòng)點(diǎn),以點(diǎn)M為圓心,MA為半徑的圓交x軸于C,D兩點(diǎn)(點(diǎn)C在點(diǎn)D的左側(cè)).
(1)如圖②,當(dāng)點(diǎn)M與點(diǎn)B重合時(shí),求CD的長(zhǎng);
(2)當(dāng)點(diǎn)M在拋物線上運(yùn)動(dòng)時(shí),CD的長(zhǎng)度是否發(fā)生變化?若變化,求出CD關(guān)于點(diǎn)M橫坐標(biāo)x的函數(shù)關(guān)系式;若不發(fā)生變化,求出CD的長(zhǎng);
(3)當(dāng)△ACP與△ADP相似時(shí),求出點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解題:學(xué)習(xí)了二次根式后,你會(huì)發(fā)現(xiàn)一些含有根號(hào)的式子可以寫成另一個(gè)式子的平方,如3+2=(1+)2,我們來進(jìn)行以下的探索:
設(shè)a+b=(m+n)2(其中a,b,m,n都是正整數(shù)),則有a+b=m2+2n2+2mn,∴a=m2+2n2,b=2mn,這樣就得出了把類似a+b的式子化為平方式的方法,請(qǐng)仿照上述方法探索并解決下列問題:
(1)當(dāng)a,b,m,n都為正整數(shù)時(shí),若a+b=(m+n)2,用含m,n的式子分別表示a,b,得a= ,b= .
(2)若a﹣4=(m﹣n)2且a,m,n都為正整數(shù),求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,是由北京國(guó)際數(shù)學(xué)家大會(huì)的會(huì)徽演化而成的圖案,其主體部分是由一連串的等腰直角三角形依次連接而成,其中∠MA1A2=∠MA2A3…=∠MAnAn+1=90°,(n為正整數(shù)),若M點(diǎn)的坐標(biāo)是(﹣1,2),A1的坐標(biāo)是(0,2),則A22的坐標(biāo)為( 。
A.(﹣1﹣29,2﹣29)B.(1﹣29,2﹣29)
C.(﹣1﹣210,2﹣210)D.(1﹣210,2﹣210)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰三角形ABC內(nèi)接于⊙O,CA=CB,過點(diǎn)A作AE∥BC,交⊙O于點(diǎn)E,過點(diǎn)C作⊙O的切線交AE的延長(zhǎng)線于點(diǎn)D,已知AB=6,BE=3.
(1)求證:四邊形ABCD為平行四邊形;
(2)延長(zhǎng)AO交DC的延長(zhǎng)線于點(diǎn)F,求AF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】A城有某種農(nóng)機(jī)30臺(tái),B城有該農(nóng)機(jī)40臺(tái).現(xiàn)要將這些農(nóng)機(jī)全部運(yùn)往C、D兩鄉(xiāng),調(diào)運(yùn)任務(wù)承包給某運(yùn)輸公司.已知C鄉(xiāng)需要農(nóng)機(jī)34臺(tái),D鄉(xiāng)需要農(nóng)機(jī)36臺(tái),從A城往C、D兩鄉(xiāng)運(yùn)送農(nóng)機(jī)的費(fèi)用分別為250元/臺(tái)和200元/臺(tái),從B城往C、D兩鄉(xiāng)運(yùn)送農(nóng)機(jī)的費(fèi)用分別為150元/臺(tái)和240元/臺(tái)
(1)設(shè)A城運(yùn)往C鄉(xiāng)該農(nóng)機(jī)x臺(tái),運(yùn)送全部農(nóng)機(jī)的總費(fèi)用為W元,求W關(guān)于x的函數(shù)關(guān)系式,并直接寫出自變量x的取值范圍;
(2)現(xiàn)該運(yùn)輸公司要求運(yùn)送全部農(nóng)機(jī)的總費(fèi)用不低于16460元,則有多少種不同的調(diào)運(yùn)方案?將這些方案設(shè)計(jì)出來;
(3)現(xiàn)該運(yùn)輸公司決定對(duì)A城運(yùn)往C鄉(xiāng)的農(nóng)機(jī),從運(yùn)輸費(fèi)中每臺(tái)減免a元(100<a<250)作為優(yōu)惠,其他費(fèi)用不變.在(2)的條件下,若總費(fèi)用最小值為10740元,直接寫出a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)要經(jīng)營(yíng)一種新上市的文具,進(jìn)價(jià)為20元,試營(yíng)銷階段發(fā)現(xiàn):當(dāng)銷售單價(jià)是25元時(shí),每天的銷售量為250件,銷售單價(jià)每上漲1元,每天的銷售量就減少10件
(1)寫出商場(chǎng)銷售這種文具,每天所得的銷售利潤(rùn)(元)與銷售單價(jià)(元)之間的函數(shù)關(guān)系式;
(2)求銷售單價(jià)為多少元時(shí),該文具每天的銷售利潤(rùn)最大;
(3)商場(chǎng)的營(yíng)銷部結(jié)合上述情況,提出了A、B兩種營(yíng)銷方案
方案A:該文具的銷售單價(jià)高于進(jìn)價(jià)且不超過30元;
方案B:每天銷售量不少于10件,且每件文具的利潤(rùn)至少為25元
請(qǐng)比較哪種方案的最大利潤(rùn)更高,并說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,若二次函數(shù)y=ax2+bx+c(a≠0)圖象的對(duì)稱軸為x=1,與y軸交于點(diǎn)C,與x軸交于點(diǎn)A、點(diǎn)B(﹣1,0),則
①二次函數(shù)的最大值為a+b+c;
②a﹣b+c<0;
③b2﹣4ac<0;
④當(dāng)y>0時(shí),﹣1<x<3,其中正確的個(gè)數(shù)是( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一次函數(shù)y=-x+6的圖象上取一點(diǎn)P,作PA⊥x軸于點(diǎn)A,PB⊥y軸于點(diǎn)B,且矩形PBOA的面積為5,則在x軸上方滿足上述條件的點(diǎn)P是( )
A.(1,5)、(5,1)
B.(1,5)、(5,1)、(3+,3-)、(3-,3+)
C.(1,5)、(5,1)、(3-,3+)
D.(1,5)、(2+,2-)、(2-,2+)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com