【題目】已知矩形ABCD中,E是AD邊上的一個(gè)動點(diǎn),點(diǎn)F,G,H分別是BC,BE,CE的中點(diǎn).
(1)求證:△BGF≌△FHC;
(2)設(shè)AD=a,當(dāng)四邊形EGFH是正方形時(shí),求矩形ABCD的面積.
【答案】見解析(2)
【解析】
(1)根據(jù)三角形中位線定理和全等三角形的判定證明即可;
(2)利用正方形的性質(zhì)和矩形的面積公式解答即可.
(1)連接EF,∵點(diǎn)F,G,H分別是BC,BE,CE的中點(diǎn),
∴FH∥BE,F(xiàn)H=BE,F(xiàn)H=BG,
∴∠CFH=∠CBG,
∵BF=CF,
∴△BGF≌△FHC,
(2)當(dāng)四邊形EGFH是正方形時(shí),連接GH,可得:EF⊥GH且EF=GH,
∵在△BEC中,點(diǎn)G,H分別是BE,CE的中點(diǎn),
∴ 且GH∥BC,
∴EF⊥BC,
∵AD∥BC,AB⊥BC,
∴AB=EF=GH=a,
∴矩形ABCD的面積=
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線經(jīng)過A(﹣2,0),B(﹣3,3)及原點(diǎn)O,頂點(diǎn)為C.
(1)求拋物線的函數(shù)解析式.
(2)設(shè)點(diǎn)D在拋物線上,點(diǎn)E在拋物線的對稱軸上,若四邊形AODE是平行四邊形,求點(diǎn)D的坐標(biāo).
(3)聯(lián)接BC交x軸于點(diǎn)F.y軸上是否存在點(diǎn)P,使得△POC與△BOF相似?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠ACB=2∠B,如圖①,當(dāng)∠C=90°,AD為∠BAC的角平分線時(shí),在AB上截取AE=AC,連接DE,易證AB=AC+CD.
(1)如圖②,當(dāng)∠C≠90°,AD為∠BAC的角平分線時(shí),線段AB、AC、CD又有怎樣的數(shù)量關(guān)系?不需要證明,請直接寫出你的猜想:
(2)如圖③,當(dāng)AD為△ABC的外角平分線時(shí),線段AB、AC、CD又有怎樣的數(shù)量關(guān)系?請寫出你的猜想,并對你的猜想給予證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,□ABCD中,BE平分∠ABC且交邊AD于點(diǎn)E,如果AB=6cm,BC=10cm,
試求:⑴□ABCD的周長;⑵線段DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,O為坐標(biāo)原點(diǎn),四邊形OABC為矩形,A(10,0),C(0,4),點(diǎn)D是OA的中點(diǎn),點(diǎn)P在邊BC上以每秒1個(gè)單位長的速度由點(diǎn)C向點(diǎn)B運(yùn)動.
(1)當(dāng)t為何值時(shí),四邊形PODB是平行四邊形?
(2)△OPD為等腰三角形時(shí),寫出點(diǎn)P的坐標(biāo)(請直接寫出答案,不必寫過程).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某電器商店計(jì)劃從廠家購進(jìn)兩種不同型號的電風(fēng)扇,若購進(jìn)8臺型和20臺型電風(fēng)扇,需資金7600元,若購進(jìn)4臺型和15臺型電風(fēng)扇,需資金5300元.
(1)求型電風(fēng)扇每臺的進(jìn)價(jià)各是多少元;
(2)該商店經(jīng)理計(jì)劃進(jìn)這兩種電風(fēng)扇共50臺,而可用于購買這兩種電風(fēng)扇的資金不超過12800元,根據(jù)市場調(diào)研,銷售一臺型電風(fēng)扇可獲利80元,銷售一臺型電風(fēng)扇可獲利120元.若兩種電扇銷售完時(shí),所獲得的利潤不少于5000元.問有哪幾種進(jìn)貨方案?哪種方案獲得最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,,分別在直線上,是平面內(nèi)一點(diǎn),和的平分線所在直線相交于點(diǎn).
(1)如圖1,當(dāng)都在直線之間,且時(shí),的度數(shù)為_________;
(2)如圖2,當(dāng)都在直線上方時(shí),探究和之間的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)如圖3,當(dāng)在直線兩側(cè)時(shí),直接寫出和之間的數(shù)量關(guān)系是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△AOB的三個(gè)頂點(diǎn)的坐標(biāo)分別是A(-4,3),B(-6,0), O是原點(diǎn).點(diǎn)M是OB邊上異于O,B的一動點(diǎn),過點(diǎn)M作MN//AB,點(diǎn)P是AB邊上的任意點(diǎn),連接AM,PM,PN,BN.設(shè)點(diǎn).
(1)求出OA所在直線的解析式,并求出點(diǎn)M的坐標(biāo)為(-1,0)時(shí),點(diǎn)N的坐標(biāo).
(2)若 = 時(shí),求此時(shí)點(diǎn)N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A(2,3),B(1,1),C(5,2)以原點(diǎn)O為位似中心,相似比為2, 將△ABC進(jìn)行變換,畫出變換后的圖形,并求出相應(yīng)的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com