【題目】如圖,在水上治安指揮塔西側(cè)兩條航線、上有兩艘巡邏艇與所在航線靠近,直線、間的距離,點在點的南偏西方向上,且,在的北偏東方向上.求:
巡邏艇與塔之間的距離.(結(jié)果保留根號)
已知巡邏艇的速度每小時比巡邏艇快,當(dāng)兩艘巡邏艇同時到達指揮塔的正南方向時,求巡邏艇的速度.
【答案】(1)巡邏艇與塔之間的距離為;(2)巡邏艇的速度是小時.
【解析】
(1)在Rt△ABF中根據(jù)cos30°=求出AF的長,即可求得AE的長,在Rt△AEC中根據(jù)sin30°=即可求得AC的長,由此即可解答;(2)設(shè)巡邏艇B的速度為xkm/小時,則巡邏艇C的速度為(x+5)km/小時,根據(jù)兩艘巡邏艇同時到達指揮塔A的正南方向列出方程,解方程即可求解.
(1)由題意可得:四邊形CDFE是矩形,故EF=CD=km,
在Rt△ABF中,cos30°=,
∴AF=ABcos30°=6×=3 km,
∴AE=AF-EF=3-=2 km,
在Rt△AEC中,∠ACE=30°,
∴sin30°= ,即AC=km.
答:巡邏艇C與塔A之間的距離AC為4km;
在中,,.
∴,
在中,,,
∴,
設(shè)巡邏艇的速度為小時,則巡邏艇的速度為小時,依題意有
,
解得,
經(jīng)檢驗可知是原方程的解.
故巡邏艇的速度是小時.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把Rt△ABC放在直角坐標(biāo)系內(nèi),其中∠CAB=90°,BC=5,點A,B的坐標(biāo)分別為(1,0),(4,0),將△ABC沿x軸向右平移,當(dāng)點C落在直線y=2x-6上時,線段BC掃過的面積為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點A(1,1),B(-1,1),C(0,4).
(1)在平面直角坐標(biāo)系中描出A,B,C三點;
(2)在同一平面內(nèi),點與三角形的位置關(guān)系有三種:點在三角形內(nèi)、點在三角形邊上、 點在三角形外.若點P在△ABC外,請判斷點P關(guān)于y軸的對稱點P′與△ABC的位置關(guān)系,直接寫出判斷結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),已知點G在正方形ABCD的對角線AC上,GE⊥BC,垂足為點E,GF⊥CD,垂足為點F.
(1)證明與推斷:
①求證:四邊形CEGF是正方形;
②推斷:的值為 :
(2)探究與證明:
將正方形CEGF繞點C順時針方向旋轉(zhuǎn)α角(0°<α<45°),如圖(2)所示,試探究線段AG與BE之間的數(shù)量關(guān)系,并說明理由:
(3)拓展與運用:
正方形CEGF在旋轉(zhuǎn)過程中,當(dāng)B,E,F(xiàn)三點在一條直線上時,如圖(3)所示,延長CG交AD于點H.若AG=6,GH=2,則BC= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(知識生成)我們已經(jīng)知道,通過計算幾何圖形的面積可以表示一些代數(shù)恒等式.例如圖1可以得到(a+b)2=a2+2ab+b2,基于此,請解答下列問題:
(1)根據(jù)圖2,寫出一個代數(shù)恒等式: .
(2)利用(1)中得到的結(jié)論,解決下面的問題:若a+b+c=10,ab+ac+bc=35,則a2+b2+c2= .
(3)小明同學(xué)用圖3中x張邊長為a的正方形,y張邊長為b的正方形,z張寬、長分別為a、b的長方形紙片拼出一個面積為(2a+b)(a+2b)長方形,則x+y+z= .
(知識遷移)(4)事實上,通過計算幾何圖形的體積也可以表示一些代數(shù)恒等式,圖4表示的是一個邊長為x的正方體挖去一個小長方體后重新拼成一個新長方體,請你根據(jù)圖4中圖形的變化關(guān)系,寫出一個代數(shù)恒等式: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】潼南中學(xué)有一個圓形噴水池,在水池中央垂直于水面安裝一個花形柱子,恰在水面中心,安置在柱子頂端處的噴頭向外噴水,水流在各個方向上沿形狀相同的拋物線路徑落下,且在過的任一平面上,拋物線形狀如圖所示.圖建立直角坐標(biāo)系,水流噴出的高度(米)與水平距離(米)之間的關(guān)系是.請問:若不計其他因素,水池的半徑至少要________米才能使噴出的水流不至于落在池外.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠ABC=90°,AB=BC,E、M分別為AB、AC上的點,連接CE,BM交于點G,且BM⊥CE,O為AC的中點,連接BO交CE于點N.
(1)如圖①,若AB=6,2MO=AM,求BM的長;
(2)如圖②,連接OG、AG,若AG⊥OG,求證:AC=BG.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】科技改變世界.2017年底,快遞分揀機器人從微博火到了朋友圈,據(jù)介紹,這些機器人不僅可以自動規(guī)劃最優(yōu)路線,將包裹準(zhǔn)確地放入相應(yīng)的格口,還會感應(yīng)避讓障礙物,自動歸隊取包裹.沒電的時候還會自己找充電樁充電.某快遞公司啟用80臺A種機器人、300臺B種機器人分揀快遞包裹.A,B兩種機器人全部投入工作,1小時共可以分揀1.44萬件包裹,若全部A種機器人工作3小時,全部B種機器人工作2小時,一共可以分揀3.12萬件包裹.
(1)求兩種機器人每臺每小時各分揀多少件包裹;
(2)為了進一步提高效率,快遞公司計劃再購進A,B兩種機器人共200臺,若要保證新購進的這批機器人每小時的總分揀量不少于7000件,求最多應(yīng)購進A種機器人多少臺?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com