【題目】如圖,AD是圓O的切線(xiàn),切點(diǎn)為A,AB是圓O的弦。過(guò)點(diǎn)B作BC//AD,交圓O于點(diǎn)C,連接AC,過(guò)點(diǎn)C作CD//AB,交AD于點(diǎn)D。連接AO并延長(zhǎng)交BC于點(diǎn)M,交過(guò)點(diǎn)C的直線(xiàn)于點(diǎn)P,且BCP=ACD。
(1)判斷直線(xiàn)PC與圓O的位置關(guān)系,并說(shuō)明理由:
(2) 若AB=9,BC=6,求PC的長(zhǎng)。
【答案】(1)直線(xiàn)PC與圓O相切(2)
【解析】解:(1)直線(xiàn)PC與圓O相切。理由如下::
如圖,連接CO并延長(zhǎng),交圓O于點(diǎn)N,連接BN,
∵AB//CD,∴BAC=ACD。
∵BAC=BNC,∴BNC=ACD。
∵BCP=ACD,∴BNC=BCP。
∵CN是圓O的直徑,∴CBN=90。
∴BNCBCN=90,∴BCPBCN=90。
∴PCO=90,即PCOC。
又∵點(diǎn)C在圓O上,∴直線(xiàn)PC與圓O相切。
(2)∵AD是圓O的切線(xiàn),∴ADOA,即OAD=90。
∵BC//AD,∴OMC=180OAD=90,即OMBC。
∴MC=MB。∴AB=AC。
在Rt△AMC中,AMC=90,AC=AB=9,MC=BC=3,
由勾股定理,得。
設(shè)圓O的半徑為r,
在Rt△OMC中,OMC=90,OM=AMAO=,MC=3,OC=r,
由勾股定理,得OM 2MC 2=OC 2,即。解得。
在△OMC和△OCP中,∵OMC=OCP,MOC=COP,∴△OMC~△OCP。
∴,即。∴。
(1)過(guò)C點(diǎn)作直徑CE,連接EB,由CE為直徑得∠E+∠BCE=90°,由AD∥BC得∠ACD=∠BAC,而
∠BAC=∠E,∠BCP=∠ACD,所以∠E=∠BCP,于是∠BCP+∠BCE=90°,然后根據(jù)切線(xiàn)的判斷得到結(jié)論。
(2)根據(jù)切線(xiàn)的性質(zhì)得到OA⊥AD,而BC∥AD,則AM⊥BC,根據(jù)垂徑定理有BM=CM=BC=3,根據(jù)線(xiàn)段垂直平分線(xiàn)的性質(zhì)有AC=AB=9,在Rt△AMC中根據(jù)勾股定理計(jì)算出AM= 。設(shè)⊙O的半徑為r,則OC=r,OM=AM-r=,在Rt△OCM中,根據(jù)勾股定理計(jì)算出 ,從而由△OMC~△OCP得相似比可計(jì)算出PC。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1),一架云梯AB斜靠在一豎直的墻上,云梯的頂端A距地面15米,梯子的長(zhǎng)度比梯子底端B離墻的距離大5米.
(1)這個(gè)云梯的底端B離墻多遠(yuǎn)?
(2)如圖(2),如果梯子的頂端下滑了8m(AC的長(zhǎng)),那么梯子的底部在水平方向右滑動(dòng)了多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商店購(gòu)進(jìn),兩種商品,購(gòu)買(mǎi)個(gè)商品比購(gòu)買(mǎi)個(gè)商品多花元,并且花費(fèi)元購(gòu)買(mǎi)商品和花費(fèi)元購(gòu)買(mǎi)商品的數(shù)量相等.
(1)求購(gòu)買(mǎi)一個(gè)商品和一個(gè)商品各需要多少元?
(2)若商店準(zhǔn)備購(gòu)買(mǎi),兩種商品共個(gè),并且購(gòu)買(mǎi),兩種商品的總費(fèi)用不超過(guò)元,那么商店至多購(gòu)買(mǎi)商品多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知的角平分線(xiàn)與邊的垂直平分線(xiàn)相交于點(diǎn),作,,垂足分別是、.求證:
(1).
(2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,C、D是⊙O上的點(diǎn),且OC∥BD,AD分別與BC、OC相較于點(diǎn)E、F,則下列結(jié)論:①AD⊥BD;②∠AOC=∠AEC; ③BC平分∠ABD;④△CEF≌△BED.其中一定成立的是_____(把你認(rèn)為正確結(jié)論的序號(hào)都填上).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)P的坐標(biāo)為(0,4),直線(xiàn)y=x-3與x軸、y軸分別交于點(diǎn)A、B,點(diǎn)M是直線(xiàn)AB上的一個(gè)動(dòng)點(diǎn),則PM的最小值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直角坐標(biāo)系xOy中,一次函數(shù)y=﹣x+5的圖象l1分別與x,y軸交于A,B兩點(diǎn),正比例函數(shù)的圖象l2與l1交于點(diǎn)C(m,4).
(1)求m的值及l2的解析式;
(2)求S△AOC﹣S△BOC的值;
(3)一次函數(shù)y=kx+1的圖象為l3,且11,l2,l3不能?chē)扇切,直接?xiě)出k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,網(wǎng)格紙中每個(gè)小正方形的邊長(zhǎng)為1,一段圓弧經(jīng)過(guò)格點(diǎn),點(diǎn)O為坐標(biāo)原點(diǎn).
(1)該圖中弧所在圓的圓心D的坐標(biāo)為 ;.
(2)根據(jù)(1)中的條件填空:
①圓D的半徑= (結(jié)果保留根號(hào));
②點(diǎn)(7,0)在圓D (填“上”、“內(nèi)”或“外”);
③∠ADC的度數(shù)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,直線(xiàn)分別與軸交于兩點(diǎn),過(guò)點(diǎn)的直線(xiàn)交軸負(fù)半軸于,且.
(1)求直線(xiàn)的函數(shù)表達(dá)式:
(2)如圖2, 為軸上點(diǎn)右側(cè)的一動(dòng)點(diǎn),以為直角頂點(diǎn),為一腰在第一象限內(nèi)作等腰直角三角形,連接并延長(zhǎng)交軸于點(diǎn).當(dāng)點(diǎn)運(yùn)動(dòng)時(shí),點(diǎn)的位置是否發(fā)生變化?如果不變請(qǐng)求出它的坐標(biāo):如果變化,請(qǐng)說(shuō)明理由.
(3)直線(xiàn)交于,交于點(diǎn),交軸于,是否存在這樣的直線(xiàn),使得?若存在,求出的值;若不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com